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Abstract 1 

Enterococci are natural inhabitants of the intestinal tract in humans and many animals, 2 

including food-producing and companion animals. They can easily contaminate the 3 

food and the environment, entering the food chain. Moreover, Enterococcus is an im-4 

portant opportunistic pathogen, especially the E. faecalis and E. faecium species, caus-5 

ing a wide variety of infections. This microorganism not only contains intrinsic re-6 

sistance mechanisms to several antimicrobial agents, but also has the capacity to acquire 7 

new mechanisms of antimicrobial resistance. In this review we will analyze the diver-8 

sity of enterococcal species and their distribution in the intestinal tract of animals. 9 

Moreover, resistance mechanisms for different classes of antimicrobials of clinical rele-10 

vance will be reviewed as well as the epidemiology of multidrug resistant enterococci in 11 

the animal field, with special attention to beta-lactams, glycopeptides and linezolid. The 12 

emergence of new antimicrobial resistance genes in enterococci of animal origin, as is 13 

the case of optrA or cfr, will be highlighted. The molecular epidemiology and the popu-14 

lation structure of E. faecalis and E. faecium isolates in farm and companion animals 15 

will be presented. Moreover, the type of plasmids that carry the antimicrobial resistance 16 

genes in enterococci of animal origin will be reviewed.   17 
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1.- INTRODUCTION 1 

Enterococcus species are natural inhabitants of the intestinal tract in humans and animals, 2 

and due to their ubiquity in human and animal feces and their persistence in the 3 

environment, enterococci are considered as indicators of fecal contamination in water (1). 4 

Moreover, enterococci serve as important key indicator bacteria for several human and 5 

veterinary resistance surveillance systems.  6 

During evisceration process at slaughterhouses, fecal enterococci can contaminate food 7 

products of animal origin. As a matter of fact, some studies reported that over 90% of 8 

food samples of animal orgin are contaminated with enterococci at the slaughterhouses, 9 

mostly with Enterococcus faecalis, followed by Enterococcus faecium (1, 2). In addition, 10 

enterococci are opportunistic pathogens, which become one of the main causes of 11 

nosocomial and community acquired human infections, including septicemia, 12 

endocarditis, and urinary tract infections, among others (3).  13 

The genus Enterococcus presently contains over 50 species, and E. faecalis and E. fae-14 

cium are the predominant isolated species accounting for more thant 80% of the isolates. 15 

In addition, these two species are considered as the third- to-forth most prevalent noso-16 

comial pathogens worldwide (4). Others, such as E. hirae, E. avium, E. durans, E. galli-17 

narum, E. casseliflavus or E. raffinosus, are rare causes of human clinical infections and 18 

thought to be more opportunistic in nature than those caused by E. faecium and E. faecalis 19 

(5-10). E. faecalis and E. faecium are also the most representative enterococcal species 20 

detected in the human intestine, being occasionally detected other species, like E. durans 21 

and E. avium (11). The most commonly encountered enterococcal species in the gut of 22 

animals are E. faecalis, E. faecium, E. hirae, and E. durans, being other species also de-23 

tected sporadically, or in particular age groups (such as E. cecorum in older poultry) (11, 24 

12). Several members of the genus Enterococcus can cause bovine mastitis, endocarditis, 25 
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septicemia and amyloid encephalopathy with sudden death in chickens (13), and diarrhea 1 

in dogs, cats, pigs and rats (12). In the last decade, E. cecorum has also emerged as an 2 

important poultry pathogen, associated with arthritis and osteomyelitis (14-15). 3 

The intrinsic resistance to several antimicrobial agents compromised the choice of 4 

therapeutic options to treat enterococcal infections. Those intrinsic resistances confer 5 

resistance to semisynthetic penicillins (low level), aminoglycosides (low level), 6 

vancomycin (E. gallinarum, E. casseliflavus and E. flavescens species), or polymyxins 7 

and streptogramins (E. faecalis) (11). Moreover, enterococci frequently acquire 8 

antimicrobial resistance genes through plasmids and/or transposons. The antibiotic 9 

resistances in Enterococcus spp. have been reviewed previously (3, 16-18), which focus 10 

on specific agents (as vancomycin [19-22] or aminoglycosides [23]) or sources 11 

(livestock/food [24-26]). The zoonotic transmission potential of antimicrobial resistant 12 

enterococci has also been reviewed [27]. In the present chapter, we update the available 13 

knowledge on the prevalence and molecular mechanisms of antimicrobial resistance in 14 

enterococcal isolates from a wide range of animals (livestock, pets and wildlife) and 15 

animal-derived food, with particular emphasis on beta-lactams, vancomycin and 16 

linezolid. Furthermore, we outline the major clonal lineages and plasmids responsible for 17 

antimicrobial resistance in Enterococcus from farm and companion animals.  18 

2. DIVERSITY OF ENTEROCOCCAL SPECIES IN ANIMAL INTESTINAL 19 

TRACT.  20 

Enterococci are ubiquitous bacteria in the gastrointestinal tract of humans and a wide 21 

range of animals (mammals, reptiles, birds, and some invertebrates). In addition, they are 22 

also commonly found in vegetables, water, soil and food derived from animals (including 23 

fermented and dairy products) (11). Enterococci are classified as acid lactic bacteria, 24 
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highly adaptable to different environmental conditions. They survive over a wide range 1 

of temperature (10-45ºC), and pH (4.8-9.6), and are able to grow at high salt concentration 2 

(up 6.5% NaCl). Most of them can hydrolyze esculin in the presence of 40% bile salts, a 3 

characteristic used for phenotypic identification processes (11). These and other 4 

properties explain the utilization of enterococci in diverse roles and, for instance, they 5 

have been used as probiotics, starter cultures, bio-preservatives or indicators of fecal 6 

contamination of water and sanitary quality of food (28-30). 7 

Genomic analysis revealed that members of the genus Enterococcus have a low G+C 8 

content, ranging from 34.29% to 44.75% (31). For a long time, Enterococcus species 9 

were considered as Streptococci of Lancefield group D. In 1984, application of nucleic 10 

hybridization and 16S rRNA sequencing led to a reclassification of Streptococcus fae-11 

cium and Streptococcus faecalis in the genus Enterococcus (32). Currently, this genus 12 

includes around 50 species (33). Many of them were discovered in the present century, 13 

mostly recovered from non-human sources, such as plants (E. plantarum, E. ureilyticus), 14 

water (E. quebecensis, E. rivorum, E. ureasiticus), animals (E. canis, E. phoeniculicola, 15 

E. devriesei) and food products (E. thailandicus; E. italicus) (34-42).  16 

A recent genomic study, which compared the concatenated nucleotide sequences of the 17 

core genes of 37 enterococci belonging to a variety of species, divided these strains into 18 

6 branches: (i) E. faecium branch (containing E. faecium, E. mundtii, E. durans, E. hirae, 19 

E. ratti, E. villorum, E. thailandicus, E. phoeniculicol), (ii) E. faecalis branch (E. faecalis, 20 

E. termitis, E. quebecensis, E. moraviensis, E. caccae, E. hemoperoxidus, E. silesiacus), 21 

(iii) E. dispar branch (E. dispar, E. canintestini, E. asini), (iv) E. casseliflavus branch (E. 22 

casseliflavus, E. gallinarum, E. aquimarinus, E. saccharolyticus, E. italicus, E. sulfureus, 23 

E. cecorum and E. columbae), (v) E. pallens branch (E. pallens, E. hermanniensis, E. 24 

devriesei, E. gilvus, E. malodoratus, E. avium, E. raffinosus) and, (vi) E. canis branch, 25 
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which contained only one strain (31). Results showed that most strains from human and 1 

other mammals were clustered into E. faecium, E. faecalis, E. dispar and E. pallens 2 

branches, whereas the majority of the bird isolates belonged to E. casseliflavus branch.  3 

In 1963, Mundt and colleagues carried out a relevant survey of the occurrence of entero-4 

cocci among animals living in the wild environment (43). They obtained enterococci from 5 

the feces of 71% of the studied mammals, 86% of the reptiles and 32% of the birds. In 6 

addition, patterns of food and animal species dependence were observed. In general, en-7 

terococci were only isolated sporadically in samples recovered from herbivorous mam-8 

mals. However, they were abundant in rodents, bats, and larger animals with omnivorous 9 

or carnivorous diet (43). But, as demonstrated in several other reports, the differences in 10 

the proportions of enterococci in each niche, as well as the species distributions, not only 11 

vary according to the diet, also to seasonal changes, individual characteristics (gender, 12 

age), and geographic location (11, 44). 13 

In general, E. faecium, E. faecalis, E. hirae and E. durans are the most prevalent entero-14 

coccal species in the gastrointestinal tract of humans and other mammals (11). E. cecorum 15 

is also a relevant member of the normal enterococcal microbiota in the gut of farm and 16 

pet animals (cattle, pigs, dogs, cats) and birds (poultry and pigeons) (45-47). However, in 17 

chickens, a significant age-dependent increase in gut colonization has been reported for 18 

this species. In fact, E. cecorum has found to be a dominant part of the enterococcal gas-19 

trointestinal microbiota in mature chickens (48). Some other species, such as E. galli-20 

narum and E. avium, which were first described in chickens, have not been frequently 21 

detected among enterococcal gut population in poultry (49, 50). 22 

In cattle and swine, the proportions of the enterococcal species varies across studies. E. 23 

faecium, E. durans, E. hirae and E. faecalis were unanimously found in different surveys 24 

(46, 50-52). In some works, E. faecalis was the predominant enterococcal species in the 25 
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gut of bovine and swine (46, 53). In others, E. hirae and E. faecium were described as the 1 

more abundant bacteria in both livestock species (44, 51, 52). As observed, variations 2 

between geographical regions might explain these differences in the composition of the 3 

enterococcal populations (44). E. casseliflavus, E. gallinarum, E. avium and E. cecorum 4 

have also been reported as part of the bovine and swine microbiota, but they were present 5 

in lower proportions (46, 50, 51). Additionally, some minoritary species, such as E. vil-6 

lorum and E. thailandicus, have been sporadically detected in feces from cattle and pigs 7 

(52, 54, 55).  8 

The enterococcal microbiota of the intestinal tract of dogs and cats showed a predomi-9 

nance of E. faecalis and E. faecium, followed by E. hirae (56-59). E. avium has been 10 

commonly isolated in canines and also, although in less proportion, in felines’ feces (56, 11 

57). Other species, such as E. durans, E. gallinarum, E. casseliflavus, E. cecorum and E. 12 

raffinosus, have been occasionally reported (56, 58, 59). In addition, some newly charac-13 

terized species were isolated from anal swabs and chronic otitis externa (E. canis) and 14 

fecal samples (E. canintestini) of dogs (34, 60).  15 

Enterococci are also normal residents of the gut of a wide range of free-living animals. In 16 

pigeons, the predominant species is E. columbae and, to a lesser extent, E. cecorum. How-17 

ever, E. faecium and E. faecalis are rare in these birds (61). Other study reported a high 18 

prevalence of enterococci among three different species of coraciiform birds (74%), with 19 

a dominance of E. faecalis, followed by E. casseliflavus (62).  In Portugal, E. faecium was 20 

the most frequently encountered species in buzzard fecal samples (63), and E. faecium, 21 

E. durans and E. gallinarum in feces of a variety of wild birds (64). Enterococcal gut 22 

microbiota has also been analyzed in wild marine species. E. faecium was identified as 23 

the most abundant species in echinoderms collected from Azorean waters. Minor species, 24 

such as E. hirae, E. faecalis and E. gallinarum, were also detected (65). In a recent study 25 
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from Southern Brazil, different wild marine animals were analyzed using real-time quan-1 

titative PCR to identify and quantify enterococci in feces. These bacteria were found in 2 

all the studied animal species, with a dominance of E. faecalis and E. mundtii in most of 3 

the marine mammals, E. faecalis in green turtles, Magellanic penguins and albatross, and 4 

E. hirae and E. gallinarum in white-backet stilt (66). Enterococci are also a relevant part 5 

of the facultative anaerobic microbiota of the gastrointestinal tract of large wild mammals 6 

(wolf, wild-boar, deer…) and rodents (67-69).  7 

Administration of antibiotics in both human and animal medicine may shift the gut mi-8 

crobial community, allowing drug-resistant strains (e.g. vancomycin-resistant entero-9 

cocci) to proliferate dramatically. As many enterococcal infections are caused by normal 10 

inhabitants of the gastrointestinal tract that become opportunistic pathogens, the selection 11 

of antibiotic-resistant strains raises the risk of developing difficult-to-treat infections. The 12 

following sections give an overview of the mechanisms and prevalence of antimicrobial 13 

resistance in enterococci in the animal setting. 14 

3.- ANTIMICROBIAL RESISTANCE IN ENTEROCOCCI OF ANIMALS AND 15 

FOOD OF ANIMAL ORIGIN 16 

3.1.- Beta-lactam resistance 17 

Enterococci are intrinsically resistant to cephalosporins and present a natural reduced 18 

susceptibility to penicillins, due to the expression of low affinity penicillin binding 19 

proteins (PBPs) that bind weakly to β-lactam antibiotics. For this reason, the minimum 20 

inhibitory concentrations (MICs) for penicillins are higher in enterococci than in 21 

streptococci or other Gram-positive organisms, that do not produce chromosomally-22 

encoded low-affinity PBPs (17). E. faecalis isolates normally exhibit lower MIC values 23 

for penicillins than E. faecium (18).  24 
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All enterococci have at least five PBPs, and six putative PBP genes have been detected 1 

by genomic analysis in the E. faecalis and E. faecium species (class A: ponA, pbpF, pbpZ; 2 

class B: pbp5, pbpA, pbpB) (18). The expression of the species-specific chromosomally-3 

located pbp5 gene, which encodes PBP5, with low affinity binding for penicillins and 4 

cephalosporins, is associated to the intrinsic resistance for beta-lactams. In E. faecium, 5 

the pbp5 gene is included within an operon, together with other two genes that are also 6 

implicated in cell wall synthesis (psr and ftsW) (18).  7 

Acquired (enhanced) resistance for penicillins (penicillin or ampicillin) has been 8 

frequently detected among clinical E. faecium isolates, being rare in the species E. 9 

faecalis. High level ampicillin resistance in E. faecium (≥ 128 µg/ml) has been associated 10 

with the increased production of PBP5 (requiring a higher concentration of the agent to 11 

saturate the active site) or to specific amino acid changes in its sequence, that make the 12 

low affinity PBP5 even less susceptible to inhibition by penicillins (70, 71). The amino 13 

acid substitutions near the Ser-Thr-Phe-Lys, Ser-Asp-Ala and Lys-Thr-Gly motifs, which 14 

are part of the active-site cavity, seems to be the most significant ones (16).  15 

Combinations of specific amino acid changes in the C-terminal transpeptidase domain of 16 

PBP5 (specially the substitution Met-485-Ala/Thr, but also the changes Ala-499-Ile/Thr, 17 

Glu-629-Val or Pro-667-Ser), and the insertion of serine or aspartic acid after position 18 

466, have been associated to ampicillin resistance in E. faecium isolates (72-76). It has 19 

been found that single substitutions at positions 485, 499, 629 and 466-insertion have 20 

only slight influence in ampicillin MIC, but when combined, the effect increases.  21 

Mutations in genes encoding other species-specific proteins that participate in the cell 22 

wall synthesis may also slightly increase the MIC value (76).  23 

Two distinct allelic forms have been identified when the whole sequence of pbp5 gene is 24 

considered, which differ in 5% of the sequence, yielding two types of PBP5 (PBP5-S and 25 
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PBP5-R) with changes in 21 amino acid residues. The type PBP5-S is usually detected in 1 

community-associated ampicillin-susceptible E. faecium isolates (MIC usually ≤ 2 2 

µg/ml), and the type PBP5-R usually detected in hospital-associated ampicillin-resistant 3 

isolates (MIC usually ≥ 16 µg/ml) (77, 78). A hybrid-like type of PBP5 (PBP5-S/R), with 4 

a sequence between the other two types, has been observed in some isolates with a MIC 5 

for ampicillin around 4 µg/ml (77, 78). 6 

Considering the population structure of E. faecium, two main lineages have been 7 

postulated in humans: 1) Subclade A1: hospital-associated, enriched in mobile genetic 8 

elements, usually implicated in human infections and, in most cases, ampicillin-resistant 9 

(MIC ≥ 16 µg/ml) with the consensus allele pbp5-R; and 2) Clade B: community-10 

associated, detected in isolates of healthy humans (not implicated in infections), generally 11 

ampicillin-susceptible (MIC ≤ 2 µg/ml), harboring the consensus allele pbp5-S. The 12 

subclade A2 includes E. faecium isolates mostly of the animal setting, exhibits a wide 13 

range of ampicillin MIC values, (0.5-128 µg/ml), and generally carries the hybrid-like 14 

pbp5 allele (pbp5-S/R) (72, 78, 79). In addition to amino acid sequence alteration in 15 

PBP5, elevated levels of this protein are also observed in higly-ampicillin-resistant 16 

isolates of clade A (subclade A1 and part of A2), but not in the ampicillin-susceptible 17 

isolates of subclade A2 and clade B, suggesting a differential regulation process in each 18 

clade. The upstream region of pbp5 seems to have a role in the level of expression of the 19 

gene (72). 20 

In E. faecalis, acquired ampicillin resistance is unusual, but is generally mediated by 21 

mutations in pbp4 (27, 80). Selected strains of E. faecalis produce a plasmid-mediated 22 

beta-lactamase that is similar to the enzyme produced by S. aureus (17, 81), encoded by 23 

the blaZ gene, although some polymorphisms in this gene have also been detected in 24 

some isolates. This beta-lactamase is expressed in a constitutive way in E. faecalis, in 25 
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contrast to the inducible production in S. aureus. The enzyme is produced in low amount 1 

in E. faecalis, and for this reason, the strain can appear as ampicillin susceptible when the 2 

MIC is tested in vitro. In any case, this mechanism of resistance is very infrequent in E. 3 

faecalis. Very unusual beta-lactamase producer E. faecium strains have also been reported 4 

(82). Chromosomal beta-lactamase-encoding genes conferring ampicillin resistance have 5 

also been detected in E. faecium isolates (83). 6 

It has been previously reported the in vitro transferability of pbp5 in E. faecium isolates 7 

(84), what suggests a mechanism by which high-level ampicillin resistance conferred by 8 

mutated pbp5 alleles could be disseminated among clinical isolates. Moreover, Novais et 9 

al. (85) demonstrated the in vitro ampicillin-resistance transference by conjugation in 10 

28% of the E. faecium isolates from a pig farm environment, although the genetic basis 11 

of this transference was not determined. Co-diversification of E. faecium core genome 12 

and pbp5 has been recently analyzed showing evidences of pbp5 horizontal transfer (86).  13 

Different studies have evaluated the prevalence of penicillin or ampicillin resistance in 14 

enterococci from food producing animals, pets or wild animals, as well as in those from 15 

food of animal origin. In relation with E. faecium, the prevalence of resistance is variable 16 

depending on the countries and the type of animals. In this sense, no resistant E. faecium 17 

isolates were detected in a surveillance study performed in cattle population at slaughter 18 

in Australia (87), but a rate of 30% of resistance was detected in isolates of poultry in 19 

Portugal (88). In relation with pets, the following ampicillin resistance rates were reported 20 

among E. faecium isolates: 63%/37% in dogs/cats in the USA, and 3% in pets in Portugal 21 

(58, 88). Moreover, ampicillin resistant E. faecium isolates were detected in 23% of the 22 

dogs screened in a cross-sectional study in the United Kingdom and in 76% of the dogs 23 

analyzed in a longitudinal study in Denmark (89). Most of these resistant isolates 24 

belonged to the hospital-adapted clonal complex CC17. Frequencies of ampicillin 25 
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resistance in the range of 4.5-7.7% have been detected in E. faecium isolates recovered 1 

from different wild animals (wild boar, Iberian wolf or Gilthead seabream) (74, 90, 91), 2 

but no resistant isolates were detected in Iberian Lynx (92).  3 

A surveillance study was performed in the USA analyzing the prevalence of antimicrobial 4 

resistance in 21077 Enterococcus isolates obtained from retail meat samples in the USA 5 

between 2002-2014, through the National Antimicrobial Resistance Monitoring System 6 

(NARMS) (2). A low frequency of ampicillin resistance was detected among E. faecium 7 

isolates of ground beef and pork chops (4% and 2.7%, respectively), but higher 8 

percentages were detected in the case of retail chicken (26%), and even higher for ground 9 

turkey (62.6%). Bortolaia et al. (25) reviewed the data of ampicillin resistance reported 10 

in different European countries (Denmark, Sweden, The Netherlands, Slovenia) and the 11 

USA for E. faecium isolates recovered from poultry meat, comparing with human isolates 12 

in the same countries (93-95). Human isolates showed very high rates of ampicillin 13 

resistance in works of all countries (>80% but resistance in food isolates was significantly 14 

lower than in humans. It is of note the detection of 10% of ampicillin resistance in E. 15 

faecium of (imported) broiler meat in Denmark and >50% of resistance in isolates of 16 

turkey meat in the USA. No ampicillin resistant E. faecalis isolates (with very few 17 

exceptions) have been reported in animals or food of animal origin. 18 

3.2 Glycopeptide resistance 19 

3.2.1.- Mechanism of resistance 20 

Vancomycin and teicoplanin are two important members of the glycopeptide family, used 21 

for the treatment of severe human infections. Avoparcin, another member of this family, 22 

has been extensively used in the past as growth promoter in food producing animals in 23 

many countries. 24 
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The mechanism of action of glycopeptides is the inhibition of the synthesis of the bacterial 1 

cell wall, by the link to the D-Ala-D-Ala terminus of the pentapeptide precursor of the 2 

peptidoglycan, preventing cross-linking of peptidoglycan chain and inhibiting cell wall 3 

synthesis. The main mechanism of glycopeptide resistance in enterococci implicates the 4 

alteration of the peptidoglycan synthesis pathway. In this sense, the terminus D-Ala-D-5 

Ala of the pentapeptide to which vancomycin binds, is modified to D-Ala-D-Lac (causing 6 

high level vancomycin resistance, >64 µg/ml) or to D-Ala-D-Ser (low level vancomycin 7 

resistance, 4-32 µg/ml). These modified cell-wall precursors bind glycopeptides with 8 

reduced affinity (about 1,000-fold and 7-fold for D-Lac and D-Ser substitutions, 9 

respectively) (18, 22).  10 

The first vancomycin resistant enterococci (VRE) with an acquired mechanism of 11 

resistance were detected three decades ago in clinical E. faecium isolates in France and 12 

United Kingdom (96, 97). Since then, VRE have been extensively described in hospitals 13 

worldwide, and especially frequent in the United States (USA) since the decade of the 14 

90´s of last century, mostly in patients of intensive care units, and in a lower level in 15 

Europe since the 2000´s (21). According with surveillance data of the ECDC (EARS-16 

Net), the EU/EEA population-weighted mean percentage of vancomycin resistance in E. 17 

faecium was of 11.8% in 2016, and national percentages ranged from 0% to 46.3%; the 18 

prevalence of vancomycin resistance in the case of E. faecalis was lower (98). 19 

Vancomycin resistance is mediated by van operons, which encode the modified 20 

peptidoglycan precursors. To date, eight different van operons have been identified in 21 

enterococci mediating acquired vancomycin resistance (vanA, vanB, vanD, vanE, vanG, 22 

vanL, vanM, and vanN), and one additional operon in intrinsic vancomycin resistance 23 

(vanC) (18, 19, 99-102). Three variants have been described of vanC gene (vanC1, vanC2 24 

and vanC3), intrinsic of the species E. gallinarum, E. casseliflavus and E. flavescens, 25 
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respectively. Moreover, different subtypes have been identified for vanB (vanB1, vanB2 1 

and vanB3), vanD (D1 to D5) and vanG (G1, G2) (100, 103, 104). An additional variant, 2 

vanF, has also been described, but until now only in the environmental microorganism 3 

Paenibacillus popilliae (105).  4 

The vanA and vanB are the most frequent genotypes among VRE with acquired resistance 5 

mechanisms of humans and animals, mostly among E. faecalis and E. faecium species. 6 

The genotypes vanD, vanE, vanG, vanL, vanM and vanN are very unusual in VRE 7 

isolates, and the species E. faecalis (vanE/G/L) and E. faecium (vanD/M/N) are the most 8 

common carriers (22). 9 

The vanA operon is associated with the transposon Tn1546, and includes seven open 10 

reading frames transcribed under two different promoters (106). Regulation is mediated 11 

by a vanS-vanR (sensor-kinase-response regulator) two-component system, transcribed 12 

with a common promoter (107). The remaining genes are transcribed from a second 13 

promoter (22). The proteins encoded by vanH (dehydrogenase that converts pyruvate into 14 

lactate) and vanA (ligase that forms D-Ala-D-Lac dipeptide) modify the synthesis of 15 

peptidoglycan precursors; moreover the proteins encoded by both vanX (dipeptidadase 16 

that cleaves D-Ala-D-Ala) and vanY (D, D-carboxipeptidase), interrupt the formation of 17 

the D-Ala-D-Ala end of the pentapeptide, and vanZ gene is related to teicoplanin 18 

resistance (22, 108). Different IS elements can be included into the vanA operon, 19 

rendering different variants (109). 20 

The vanB operon has been associated to different transposons (Tn1547, Tn1549 and 21 

Tn5382). The Tn1549 is widely prevalent among vanB-type enterococci, in most of the 22 

cases located in the chromosome and less frequently on plasmids (22). The structure of 23 

the vanB operon is similar to the one of vanA, with two promoters and seven open reading 24 

frames, but with important differences, mostly in the two-component signaling regulatory 25 
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system (encoded by vanRB and vanSB), and in the absence of an homolog of vanZ 1 

(substituted by vanW, of unknown function); consequently, vanB-enterococci show 2 

vancomycin resistance (high or low level) but teicoplanin susceptibility (22, 108).  3 

The structure of the different van operons and their mechanisms of action have been 4 

extensively reviewed in previous studies (17-19, 21, 22, 108, 110).  5 

Origin of vancomycin resistance. Partially pre-assembled glycopeptide resistance-6 

associated gene clusters present in environmental organisms are suggested as the source 7 

of the vancomycin resistance genes in VRE (105, 111). The environmental organism P. 8 

popilliae, carrier of a vanF variant with a high similarity at the amino acid level to vanA, 9 

has been suggested as the potential origin of vancomycin resistance in enterococci. In a 10 

lesser extent, this role could also be attributed to glycopeptide-producing organisms (e.g. 11 

the vancomycin-producing organism Amycolatopsis orientalis), which require these 12 

genes to inhibit the action of produced glycopeptides (111). Nevertheless, the genes in 13 

these organisms are probably not the direct source of the enterococcal vancomycin 14 

resistance genes since they are similar, but not identical; in this sense, transference could 15 

have occurred from a common ancestral bacterium, or via one or more bacterial 16 

intermediaries. In addition, considering the differences in G+C content, as well as the 17 

sequence homology among different organisms, it is possible that the genes of the van 18 

cluster could have more than one origin (111). 19 

 3.2.2.- Historical aspects related to glycopeptide resistance 20 

During the decade of the 1990s, VRE with the vanA genotype emerged in food producing 21 

animals, healthy humans, food products and environmental samples throughout Europe 22 

and other countries; this fact was linked to the use of the glycopeptide avoparcin since 23 

the mid-1970s, in sub-therapeutical concentrations, as animal growth promoter (22, 26, 24 
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112, 113). This hypothesis was tested in poultry flocks and pig herds receiving or not 1 

avoparcin, confirming the significant role of avoparcin in VRE selection in the animals 2 

(112, 113). This association was also corroborated in an animal model with young 3 

chickens receiving avoparcin supplementation (114). Avoparcin as growth promoter was 4 

banned in the European Union (EU) in 1997, and a clear decrease in VRE fecal carriage 5 

in food producing animals and healthy humans was observed (115), as well as in food-6 

derived products. Nevertheless, VRE persisted in the animal setting many years after 7 

avoparcin ban (116, 117). A similar situation happened in Taiwan after the ban of 8 

avoparcin in 2000 that resulted in a clear decrease of VRE prevalence in chicken, although 9 

still persisted in this animal population (118). In relation with dogs, high rates of fecal 10 

VRE carriage was reported before avoparcin ban in the EU (119), although no VRE was 11 

detected in dogs in Spain after a decade of banning (120). The frequency of human 12 

infections by VRE in the EU was low during the period of high prevalence in animals, 13 

but an increase in the frequency of VRE-related human infections was evidenced since 14 

1999 (22).  15 

The situation in the United States and Canada was completely different comparing with 16 

EU. Avoparcin use has never been approved in animal production in those countries, and 17 

VRE was not reported in animals until the end of 2000 decade (20, 76, 121, 122). 18 

Nevertheless, in North America, VRE was very frequent causing human infections, 19 

especially in patients of the Intensive Care Units, what was attributed to the high use of 20 

vancomycin in humans (22, 123). The differences in VRE prevalence in humans and 21 

animals in the EU and USA before and after the avoparcin ban in the EU, introduce some 22 

doubts about the possible routes of transmission of VRE determinants between animals 23 

and humans (22, 124). 24 
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Different theories have been postulated to explain the persistence of VRE in food-1 

producing animals after the avoparcin ban in the EU and in other countries, as is the 2 

coselection by the use of other antimicrobials (like erythromycin or tetracycline). In fact, 3 

it has been shown that vanA and erm(B) genes (this last one implicated in erythromycin 4 

resistance) are frequently located in the same transferable plasmids (113). Moreover, the 5 

tcrB gene, implicated in copper resistance, has been detected in pig E. faecium isolates in 6 

the same plasmid as the vanA and erm(B) genes (125). On the other hand, the presence of 7 

plasmid addition systems in the same plasmid that carries vanA gene could forces bacteria 8 

to retain the resistance (125). 9 

3.2.3 VRE in food producing animals and food of animal origin 10 

Table 1 and 2 summarize the papers that have been published related to the prevalence 11 

and mechanisms of vancomycin resistance in enterococci of food-producing animals, and 12 

food of animal origin, respectively, as well as the genetic lineages of the isolates (when 13 

available). Data have been organized by animal species (poultry, pigs or cattle, among 14 

others), and by the year the isolates were recovered. Many of the studies have been 15 

performed in different European countries, but also in many countries of America, Africa, 16 

or Asia, as well as in Australia and New Zealand. 17 

Most of the surveys on food producing animals reported E. faecium as the major species 18 

of the genus Enterococcus exhibiting acquired resistance to vancomycin, in most of the 19 

cases with the vanA genotype. However, vanA-containing E. faecalis, and in a lesser 20 

extent E. durans and E. hirae isolates, have also been quite frequently detected in food 21 

producing animals (Table 1) (27, 85, 87, 114, 121, 122, 125-165). Other enterococcal 22 

species have occasionally been reported as vanA-carriers, as is the case of E. mundtii in 23 

poultry in Hungary (130), E. casseliflavus in cattle in France (158), and in equine and 24 

swine in Italy (159). Available data indicates that vanA gene was, by far, the main 25 
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responsible for acquired VRE cases in food-producing animals worldwide, regardless the 1 

species. Nevertheless, the vanB gene (and specially the vanB2 variant) was occasionally 2 

detected. The first detection of vanB2 in animals was in a vancomycin-resistant E. hirae 3 

isolate recovered from a pig in Spain in 2008 (145); later on, vanB-positive E. faecium 4 

and E. faecalis isolates were detected in poultry in Czech Republic (132) and in 5 

Enterococcus spp. in pigs in South Africa (147). Moreover, vanC1 was detected as an 6 

acquired gene in isolates of the species E. faecium, E. faecalis and E. mundtii in poultry 7 

in Australia (140). In most of the studies, VRE were detected when a selective protocol 8 

with media supplemented with vancomycin was used (Table 1). Resistance frequencies 9 

varied depending on the type of animals tested (poultry: 0-77%; pigs: 0-25.3%; and cattle: 10 

0-0.5%), the year in which the study was performed, the country and the protocol used 11 

for VRE recovery (see Table 1). vanA-containing enterococci have also been detected in 12 

ostriches and mullet fish in Portugal (prevalence of resistance of 7.4% and 3.9%, 13 

respectively) (164). In eight of the revised papers in which VRE were detected in food-14 

producing animals, the data of MLST was provided for vanA-positive E. faecium (most 15 

of isolates) or E. faecalis isolates. A wide variety of sequence types (ST) were identified 16 

among the E. faecium isolates from poultry and pigs (>30 different STs) (27, 85, 121, 17 

122, 127, 129, 144, 156). Also, the lineage ST6 (CC2) was identified in E. faecalis of pig 18 

origin (85). 19 

The E. faecium species carrier of vanA gene was the most frequent VRE detected in food 20 

of animal origin. Nevertheless, vanA-containing E. faecalis, E. durans and E. hirae 21 

isolates were, as well, frequently detected in these type of samples (Table 2) (2, 118, 128, 22 

133, 162, 166-194). VRE with vanB gene was found in E. faecium isolates from veal and 23 

chicken in Spain (ST17-vanB2) (188), and in different types of food in Greece (vanB2/3) 24 

and Spain (vanB) (181, 190). It is interesting the identification of the unusual vanN gene 25 
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in 5 E. faecium isolates of chicken meat origin in Japan, showing low level of vancomycin 1 

resistance (MIC 12 µg/ml) (177). Moreover, of relevance is the unusual detection of 2 

vanA-containing E. cecorum isolates in chicken samples from Japan (168), vanA-positive 3 

E. gallinarum in fishes from Egypt (193), or vanC1-positive E. faecalis isolates in sheep 4 

milk samples from Spain (192). The frequencies of detection of VRE with acquired 5 

resistance in food samples were variable (Table 1). In chicken and pork food samples 6 

analyzed in the period 1996-1999, the prevalence was in the range of 4.2-34% (Table 2), 7 

with a few exceptions (1.3%) (167). Very high frequencies were detected in different 8 

types of food in Korea (44%) (133), but no VRE were found in the studies performed in 9 

the USA (2, 171, 185). In some cases, isolates showing a phenotype usually associated to 10 

vanB genotype (high-level resistance to vancomycin, susceptibility to teicoplanin) were 11 

detected in Enterococcus strains harboring the vanA gene (118, 168, 173). 12 

3.2.4. VRE in companion animals 13 

Table 3 shows the detection of VRE with acquired mechanisms of resistance in 14 

companion animals. vanA-containing E. faecium has been the unique type of VRE with 15 

acquired resistance reported in dogs and cats (136, 145, 195-202). These isolates, 16 

recovered from fecal samples in the period 1996-2003, were found in USA, Spain and 17 

Portugal, with variable frequencies of detection (ranging from 2.8 to 22.7%) (136, 145, 18 

195, 196). No VRE have been detected in studies performed in the following years (Table 19 

3), not even in sick dogs (197, 200). Vancomycin-resistant E. faecium and E. durans 20 

isolates have been detected in fecal samples of equids obtained between 2007-2008 21 

(prevalence 4.4%), in a study performed in Portugal (202). 22 

3.2.5- VRE in free-living animals 23 
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Table 3 also shows the detection of VRE with acquired mechanisms of resistance in free-1 

living animals, including different species of mammals and birds (136, 165, 203-226). 2 

Many studies have been performed in this type of animals, including various countries of 3 

Europe, America (USA, Canada and Brazil) and Africa (Tunisia and Tanzania). The most 4 

frequently detected mechanism of resistance was vanA, mainly among E. faecium 5 

isolates, followed by E. faecalis (E. durans and E. hirae were infrequently detected). 6 

Occasionally, enterococci were vanB-carriers: two small mammals (Rattus rattus) 7 

harbored vanB2-containing E. faecalis ST6 isolates in Spain (204), and E. faecium vanB 8 

was detected in wild game meat also in Spain (226). The frequencies of detection of vanA-9 

containing enterococci in wild animals ranged from 0% to 13.5%, with the highest values 10 

detected in red foxes, seagulls and buzzards in Portugal (9-13.5%) (216, 220, 222). It is 11 

of interest the detection of vanA-containing E. faecium isolates ascribed to different 12 

sequence types included in the high-risk clonal complex CC17 (ST18, ST262, ST273, 13 

ST280, ST313, ST362, ST412, ST448, and ST555). These isolates were detected in 14 

corvids in USA and in mullet fish, gilthead seabream, seagulls, buzzards, partridges, red 15 

foxes and Iberian wolves in Portugal (Table 3).  16 

3.3.- Resistance to linezolid 17 

The wide spread of VRE in many countries make necessary to look for other therapeutic 18 

options, and linezolid is an important one. This oxazolidinone, introduced in 2000 in USA 19 

and in 2001 in the United Kingdom, is an important agent for the treatment not only of 20 

VRE, but also of other gram-positive bacteria, as is the case of methicillin-resistant 21 

Staphylococcus aureus (MRSA). 22 

Linezolid resistance is still unusual among enterococci but is emerging in the last years 23 

in human and animal isolates (227). Mutations in the central loop of the domain V of the 24 

23S rDNA is the most common mechanism of resistance in enterococci, being the amino 25 
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acid change G2576T the predominant one, although other changes have also been 1 

described (G2505A, U2500A, G2447U, C2534U or G2603U) (18). E. faecalis and E. 2 

faecium possess among four and six 23S rDNA alleles per genome, respectively, and 3 

depending on the number of mutated versus wild-type alleles per genome, correlate with 4 

the level of resistance of the isolates (227). In some cases, this mechanism appears along 5 

the course of treatment with oxazolidinones, and nosocomial transmission of linezolid-6 

resistant enterococci has been reported (228). Linezolid-resistant E. faecalis and E. 7 

gallinarum isolates of swine origin were detected in China (MIC 8-16 µg/ml), and the 8 

nucleic acid change G2576T was identified in the 23S rDNA of these isolates (229). 9 

Mutations in the ribosomal proteins L3, L4 and L22, can confer decreased susceptibility 10 

to linezolid in enterococci and staphylococci (230).  11 

In the last years, concern exists about the emergence of transferable resistance to 12 

linezolid, associated with the acquisition of the cfr gene, or with the recently described 13 

optrA gene. The cfr gene has been detected in enterococci of both human and animal 14 

origins (231) and encodes an rRNA methyltransferase that modifies the adenine residue 15 

at position 2503 in domain V of the 23S rRNA; it confers resistance to oxazolidinones, 16 

phenicols, lincosamides, pleuromutilins and streptogramin A (phenotype named as 17 

PhLOPSA) (18). Among oxazolidinones, linezolid is mostly affected by cfr gene, showing 18 

telizolid, a new compound of this family, increased activity in cfr-positive enterococci, 19 

and so, isolates being susceptible for this agent. Table 4 shows a summary of the data 20 

published until now in relation to linezolid resistance mechanisms in enterococci of 21 

animal and food origins, as well as in enterococci of environmental origin (229, 232-241). 22 

The cfr gene was identified for the first time in enterococci in 2011, specifically in an E. 23 

faecalis isolate recovered in a dairy farm in China (232). Since then, the cfr gene has been 24 

detected in human clinical E. faecalis isolates (242), as well as in swine E. casseliflavus, 25 
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E. gallinarum and E. faecalis isolates in China or Brazil (233-235), and in a cattle E. 1 

faecalis isolate in China (234). A second variant of the cfr gene, named cfr(B), has been 2 

described in E. faecium isolates of human origin. This new plasmid-located variant, is 3 

more similar to a cfr-like gene of Clostridium difficile than to the cfr genes of 4 

staphylococci or other enterococcal species (243, 244), and has so far not been detected 5 

in enterococci of animal origin. 6 

The novel optrA gene confers transferable resistance to oxazolidinones (both linezolid 7 

and telizolid) and phenicoles (chloramphenicol and florfenicol) and has been detected in 8 

E. faecalis and E. faecium isolates of both human and animal origins (236). This gene 9 

encodes an ABC transporter and has been detected more frequently in E. faecalis than in 10 

E. faecium isolates, and also more frequently in isolates from food-producing animals 11 

(pigs and chicken), than in those of human origin (236). The optrA gene has been detected 12 

both in chromosomal as well as in plasmidic location in animal and human E. faecalis 13 

and E. faecium isolates. As shown in Table 4, optrA-positive enterococci have been 14 

detected in food producing animals (poultry, pigs and, occasionally, cattle) in Asiatic 15 

countries, mostly in E. faecalis and E. faecium belonging to many different sequence 16 

types, and sporadically in E. gallinarum. The prevalence of optrA-positive enterococci 17 

represents 10% and 5.7% of total E. faecalis and E. faecium, respectively, obtained from 18 

fecal samples of poultry and pigs in a study performed in China (236). In a recent study 19 

carried out in Korea, 11,659 E. faecalis and E. faecium isolates obtained from fecal and 20 

carcass samples of healthy cattle, pigs and chickens from farms and slaughter houses 21 

during 2003-2014, were tested for linezolid resistance, detecting a rate of resistance of 22 

0.33%, mainly attributed to optrA carriage (238). The optrA gene has also been detected 23 

in sporadic isolates of E. faecalis and E. faecium (n=3) obtained in meat samples in 24 

Denmark (imported poultry, and veal), that represented <0.1% of total enterococci 25 
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recovered from these samples (239). In the American continent, optrA has been detected 1 

in three E. faecalis isolates of poultry meat origin, co-harboring fexA, tet(L) and Isa(A) 2 

resistance genes (240). Both cfr and optrA genes have been detected associated in VRE 3 

isolates of human origin (245), but not in animal isolates so far. 4 

The optrA gene has also been detected in two E. faecalis isolates of the lineage ST86 5 

recovered from urban wastewater in Tunisia, accounting for 1% of all chloramphenicol 6 

resistant enterococci tested (241); the optrA gene was located within a transferable 7 

mosaic plasmid, that also contained the fexA and erm(A) genes.  8 

At least 12 and 5 polymorphic variants of the optrA gene have been detected among 9 

human and animal enterococci, respectively (237, 246-248). The wild OptrA type 10 

(OptrAE349), and the variants Tyr176Asp + Lys3Glu-Gly393Asp or Thr481Pro or 11 

Thr112Lys or Gly393Asp, have been found among animal isolates (237, 246). Functional 12 

cfr and optrA genes have been identified in both enterococci and S. aureus. In most of the 13 

animal isolates, the optrA gene is located close to other genes, as is the case of fexA 14 

(implicated in phenicol resistance) and a novel erm(A)-like gene. This erm(A)-like gene 15 

encodes an rRNA methylase, which shows 85.2% amino acid identity to the Erm(A) 16 

protein of transposon Tn554 of S. aureus (237). 17 

Most of the cfr-positive enterococci of food producing animals (>90%) showed a MIC 18 

for linezolid of ≥8 µg/ml, but two E. faecalis isolates presented a MIC of 4 µg/ml. In 19 

relation with optrA-positive isolates of food-producing animals and food origin, they 20 

showed a linezolid MIC in the range 2->8 µg/ml, presenting 19% of the isolates MICs in 21 

the range 2-4 µg/ml (categorized as susceptible according to EUCAST breakpoints and 22 

susceptible-intermediate according to CLSI) (Table 4). It is interesting to remark that cfr- 23 

and optrA-positive enterococci could appear as linezolid-susceptible, probably leading to 24 

an underestimation of their real incidence. 25 
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Oxazolidinones are not used in food-producing animals. Nevertheless, the emergent 1 

detection in these animals of linezolid-resistant enterococci carrying the optrA gene in 2 

transferable plasmids, linked to resistance genes for antibiotics commonly used in animals 3 

(phenicols, tetracyclines, lincosamides and aminoglycosides), suggest its role in the co-4 

selection of multiresistant bacteria, which pose a risk for public health.  5 

Summarizing, transferable linezolid resistance genes, mostly optrA, have been detected 6 

in enterococci of food producing animals and food of animal origin in different countries 7 

of Europe, America and Asia, but up to date not in Africa. These mechanisms of 8 

resistance have not been detected so far, to our knowledge, in pets or in wild animals. 9 

3.4.- Resistance to aminoglycosides 10 

Enterococci are intrinsically resistant to clinically achievable concentrations of 11 

aminoglycosides due to their low cell wall permeability. In addition, some species as E. 12 

faecium [aac(6’)-Ii], E. durans [aac(6’)-Id] and E. hirae [aac(6’)-Ih], intrinsically 13 

express a chromosomal-encoded acetyltransferase that confers resistance to tobramycin, 14 

kanamycin and amikacin (249). The chromosomally encoded methyltransferase EfmM 15 

has been exceptionally described in an E. faecium isolate (250) codifying resistance to 16 

kanamycin and tobramycin. Acquired resistances to aminoglycosides are detected in 17 

strains from both animals and humans and usually concern to high-level of resistance to 18 

gentamicin, kanamycin and streptomycin.  19 

High-level resistance to gentamicin in enterococcal isolates from animal origin was first 20 

described in 1998 in Denmark (251) and in 2001 in United States (252). The acquired 21 

genetic mechanisms identified in animal isolates are identical to those described in human 22 

isolates. The most frequent ones are the bifunctional enzyme encoded by aac(6’)-Ie-23 

aph(2’’)-Ia (conferring resistance to gentamicin, kanamycin, amikacin, netilmicin and 24 



25 
 

tobramycin) and the aph(3)-IIIa (conferring resistance to kanamycin and amikacin) (23, 1 

253). High-level gentamicin resistance can also be due to the expression of the unusual 2 

aph(2”)-Ic, aph(2”)-Id, aph(2”)-Ie and aph(2”)-Ib genes (17, 23); the aph(2”)-Ic seems 3 

to be more frequent in enterococci of animal origin and some farm animals could be a 4 

reservoir of this gene (252). High-level resistance to streptomycin is commonly caused 5 

by punctual ribosomal mutations, although acquisition of some modifying enzymes has 6 

been also described [ant(3’’)-Ia and ant(6’)-Ia]. Table 5 shows a summary of papers (in 7 

the period 2013-2017) in which the rates of antimicrobial resistance (high-level 8 

gentamicin, and others as tetracycline, erythromycin or ciprofloxacin) is analyzed in 9 

enterococcal isolates from animals (65, 15, 87, 90, 92, 135, 141, 143, 147, 153, 154, 198, 10 

205, 209, 254-276).  11 

3.5.- Resistance to Tetracycline 12 

This family integrates several antibacterial active compounds (277), although 13 

tetracycline, chlortetracycline, oxytetracycline, and doxycycline are the most used in 14 

veterinary. Despite the extensive review about the tetracyclines resistance mechanisms 15 

lead in 1996 by Roberts (278), a most recent update was published in 2005 (279). Almost 16 

60 tetracycline resistance genes have been described, although the most frequent ones in 17 

Enterococcus are those implicated in ribosomal protection [tet(M), tet(O), tet(S)], efflux 18 

or enzymatic inactivation [tet(K), tet(L)]. In Enterococcus, as occurs in other gram 19 

positives microorganisms, the ribosomal protection protein mechanism encoded by the 20 

tet(M) gene is the most frequent, with independence of the origin of the strains. The 21 

transferability of the tetracycline resistance determinants in absence of plasmids has been 22 

described from the first studies (280), being the Tn916/Tn1545 conjugative transposon 23 

family carrying the tet(M) gene the responsible, usually in combination with the erm(B) 24 

gene. 25 
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3.6.- Resistance to Macrolides/Lincosamines/Streptogramins 1 

Numerous chemically diverse compounds are integrated into the macrolide family, with 2 

erythromycin as the most representative. Resistance to this antibiotic was immediately 3 

reported after their introduction in human clinical use in 1952; moreover, enterococci are 4 

intrinsically resistant to clindamycin and lincomycin. Tylosin, spiramycin and 5 

virginamycin were widely used in pigs and other animals before the EU limited their used. 6 

After the ban, the erythromycin resistance in Enterococcus strains from animals 7 

decreased spectacularly (281), demonstrating the link between the antibiotic consumption 8 

and the increase of the resistance rates, even in different environments.  9 

Chromosomal intrinsic resistance to macrolides by msr(A) and to lincosamides by linB 10 

in E. faecium has been described (282, 283). Acquired resistance to macrolides can be 11 

codified by various genetic determinants (up to 92 have been described) (284), although 12 

the most common worldwide is erm(B), usually carried by Tn917 that is widespread in 13 

human and animal isolates. Other relevant genes in the genus Enterococcus are the efflux 14 

genes mef(A) conferring resistance to macrolides, vgb(A) to virginiamycin, lnu(B) to 15 

lincosamide, vat(D) and vat(E) to streptogramins.  16 

3.7.- Resistance to Quinolones 17 

Fluoroquinolones have a reduced antimicrobial activity against enterococci, with 18 

levofloxacin and moxifloxacin as the most active compounds. Acquired resistance is the 19 

consequence of mutations in the gyrA and parC genes (286, 287) or the acquisition of the 20 

qnr genes (287). Efflux pumps as EmeA for E. faecalis (288), and NorA-like for E. 21 

faecium (289) have been also described, although their frequency is low. Resistance to 22 

ciprofloxacin is a conserved feature among the high-risk E. faecium CC17 clone linked 23 

to nosocomial outbreaks (290), and almost all isolates with resistance to glycopeptides. 24 
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Fluoroquinolones have never been used as growth promoters, although their use for 1 

veterinary therapy is common.  2 

4.- MOLECULAR EPIDEMIOLOGY AND POPULATION STRUCTURE OF 3 

ENTEROCOCCI IN FARM AND COMPANION ANIMALS 4 

Epidemiological studies in farm and companion animals were originally driven by the 5 

interest to establish a relationship between antibiotic resistant isolates from human and 6 

non-human hosts. At present, the resistance phenotypes of clinical relevance that may be 7 

linked to animals mainly comprise resistance to ampicillin, gentamicin, quinupristin-8 

dalfopristin, vancomycin, and linezolid. 9 

Molecular typing of enterococci strains has been performed by different methods that 10 

includes pulsed field gel electrophoresis (PFGE), amplified fragment length 11 

polymorphism (AFLP), multilocus sequence typing (MLST), coregenome MLST 12 

(cgMLST), Bayesian analysis of population structure (BAPS) and whole genome 13 

sequencing (revised in 291). 14 

The emergence of VRE in European foodborne animals and food of animal origin in early 15 

1990s (128, 291, 292-296), as well as in  feces of healthy volunteers or food handlers 16 

(297-299), encouraged surveillance studies in the community setting that led to suggest a 17 

relationship between the extensive use of animal growth promoters in veterinary (e.g. 18 

avoparcin and tilosin), the colonization pressure in animals, and the subsequent 19 

transmission to human hosts throughout the food chain (300-301).  20 

The first report of VRE in non-human hosts occurred in 1993 in the UK and documented 21 

the similarity between isolates of different origins (300). This study was followed by 22 

others, which confirmed the similarity of VRE strains from humans and farm animals 23 

exposed to avoparcin in different European countries (26, 292, 302-305). The potential 24 
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selection of antibiotic resistant enterococci by antibiotics led to the unilateral ban of 1 

avoparcin as animal growth promoter in Sweden in 1986, Denmark and Switzerland in 2 

1995, and two years later in the rest of the European countries (Commission Directive 3 

97/6/EC). By 1999, other antibiotics (as bacitracin, virginiamycin and tylosin) were also 4 

banned as growth promoters for healthy animals in Europe, and this was followed in 2006 5 

for all antibiotics. In this way, Europe leaded the first intervention against VRE at global 6 

level. In contrast with western countries, the use of antimicrobials in livestock and 7 

poultry, as well as the standard policies on antimicrobial use, highly varies in each Asian 8 

country (revised in 306). In Korea, avoparcin was used in the management of poultry and 9 

swine from 1983 to 1997 but was banned thereafter to reduce the exposure of humans to 10 

VRE (133). After several years of avoparcin discontinuance in Korea, the prevalence of 11 

VRE in Korean livestock was investigated, and some studies reported that the VRE 12 

incidence rate in chicken samples was higher than that in pig samples (163, 307). 13 

The ban led to a significant reduction of VRE colonization in animals, foods, and fecal 14 

samples of community-based persons of different countries. However, VRE was 15 

recovered in feces from animals and humans after years reflecting important effects of 16 

previous livestock practices in the population structure of enterococci in animals.  17 

Most information came from the species E. faecium and E. faecalis, the predominant ones 18 

in the gastrointestinal tract of mammals besides E. hirae, E. durans and E. cecorum (11, 19 

45, 46).  20 

4.1.- Enterococcus faecium 21 

PFGE remained the “gold standard” for molecular typing of E. faecium until the recent 22 

introduction of whole genome sequence (WGS)-based epidemiology (291, 308). By using 23 

PFGE, clonal dissemination of E. faecium strains with clinically relevant phenotypes 24 
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(ampicillin, gentamicin, quinupristin-dalfopristin and vancomycin) has been extensively 1 

documented between animals of the same or different farms and has also been suggested 2 

between animals and humans (309, 310). The data varies greatly among geographic areas 3 

and are normally associated with the use of antibiotics.  4 

Ecological differentiation of E. faecium has been documented in epidemiological studies 5 

using AFLP, MLST and/or BAPS (311-314). AFLP analysis originally revealed different 6 

subpopulations (or ecotypes) corresponding to hospitalized patients, community-based 7 

persons, and farm animals including veal calves, poultry and swine (311, 315). 8 

Afterwards, MLST results using eBURST confirmed the split of E. faecium in host-9 

specific subgroups, one from hospitalized patients [originally termed clonal complex 17 10 

(CC17)], and others from domesticated animals (291, 316). More recently, BAPS analysis 11 

allowed the partitioning of 519 STs of 1720 E. faecium isolates into 13 non-overlapping 12 

groups. Again, BAPS groups were significantly associated with isolates from hospitalized 13 

patients (BAPS 3-3) and farm animals (BAPS 2–1 and 2–4) (313). More recently, single 14 

nucleotide polymorphism-based phylogenetic analysis of WGS data split E. faecium in 15 

isolates causing infections (clade A1), isolates from healthy humans (clade B) and isolates 16 

from healthy humans and animals (clade A2) (79). The clade A1 mostly comprises 17 

isolates from hospitalized humans associated with lineages 17 (including ST16 and 18 

ST17), 18 (ST18) and 78 (ST78 and ST192), although isolates from animals have been 19 

extensively reported (313, 89, 304). The ST78 isolates show putative evolutionary 20 

hallmarks with respect to pets (dogs and cats) and poultry isolates and diversified mainly 21 

through recombination and acquisition or loss of mobile genetic elements, which 22 

eventually led to adaptation to different ecological niches. Thus, ecological distinction is 23 

not absolute, and the main zoonotic risk linked to E. faecium isolates is represented by 24 

transfer of mobile genetic elements harboring antimicrobial resistance genes. 25 
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Poultry. E. faecium isolates resistant to macrolides, quinusptistin-dalfoprisitin or other 1 

streptogramins were extensively reported in poultry farms revealing high heterogeneity 2 

of PFGE types and STs, although some similar patterns were eventually detected in farms 3 

in Europe, USA and Asia (317-319). Clonal dissemination of VRE of the E. faecium 4 

species (VREfm) within poultry farms exposed to antibiotics before and after the ban of 5 

avoparcin (109, 302) were documented in European and Asian countries, with STs 6 

belonging to CC9 or CC96 as the predominant ones in Europe or Malaysia, respectively 7 

(320). A dramatic increase of VREfm in Sweden from 2000 to 2009 was due to the clonal 8 

expansion of the clone ST310, despite the absence of selection by antibiotics in this 9 

country, where the use of antibiotics as animal growth promoters was forbidden since 10 

1986 (129). A Danish study showed the high rate of VREfm in Danish farms after 15-11 

year ban of avoparcin, with different ST and the presence of a ST842 clone in 36 flocks 12 

analyzed corresponding to eight farms broadly distributed in the country (85). Recently, 13 

clonally unrelated E. faecium isolates resistant to linezolid emerged in farms from China 14 

(236, 237). Common PFGE profiles or STs between humans and broilers have also been 15 

documented (321-323), but the human health risk associated with the presence of E. 16 

faecium in poultry meat is under debate (25). 17 

Swine. VREfm has been extensively documented in pig farms from European countries 18 

before and after the avoparcin ban (113, 324, 325). Clonal spread of VREfm was 19 

documented in Denmark, Norway, Finland (113), Switzerland (326), Portugal (304), and 20 

Spain (327), with predominance of STs belonging to the CC5 lineage (ST5, ST6, ST185). 21 

The persistence of VREfm in pig farms after the avoparcin ban was associated later with 22 

the use of tylosin, which facilitated the co-selection of strains resistant to both 23 

glycopeptides and macrolides due to the presence of both vanA and erm(B) genes in the 24 

same plasmid (113). VREfm was also detected in county fairs in Michigan from 2008 to 25 
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2010, which represents the first and unique report of VREfm in livestock in the USA to 1 

date (121, 122). In Asia, the occurrence varies with the countries and is sporadic in China 2 

(156). In all these studies, CC5 strains were also predominantly identified. A particular 3 

ST6 (CC5) clone was identified in farms of different EU countries and the USA, as well 4 

as in healthy volunteers and hospitalized patients, all carrying a Tn1546 in orf1 and a G-5 

T point mutation in the position 8234 at vanX (304, 328). Besides tylosin, copper is 6 

frequently added to pig and cattle feeds, so co-location of heavy metal resistance 7 

determinants has been also demonstrated in Europe and the USA (329, 330). Copper 8 

resistance is often associated with resistance to macrolides (erm(B)), tetracyclines 9 

(tet(M)), and with glycopeptides (vanA). Although clonal dissemination has been reported 10 

(330), a great diversity has been documented in farms (331). Major human clones (early 11 

classified as CC17), CC9 and CC22 have also been documented in some studies (85, 332, 12 

333).  13 

Companion animals. A few studies have analyzed the fecal carriage of ampicillin 14 

resistant E. faecium (AREfm) and VREfm in companion animals. High rates of AREfm 15 

were observed among fecal samples of dogs collected in UK and Denmark in 2006 and 16 

2008 (23% and 76%, respectively) (89, 334). Most of these isolates belonged to the major 17 

human clonal lineage CC17, which apparently suggested a possible transmission between 18 

hosts. Later, De Regt et al., demonstrated some unique metabolic features in these CC17 19 

canine isolates that would facilitate niche adaptation (335). A recent large Dutch 20 

countrywide population-based study reported a higher prevalence of fecal carriers of 21 

AREfm in dogs and cats than in healthy human population (25.6%, 5.1% and 1.5% 22 

respectively). This study concluded that isolates from pets were genetically distinct from 23 

those of humans based on the lack of co-occurrence and the cgMLST results (336). Prior 24 

antibiotic use and eating raw meat were considering a risk factor for acquiring AREfm in 25 
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all the available studies (197, 336). Clinical isolates from dogs and cats treated with 1 

amoxicillin belong to high clonal complex risks and were similar to those from humans 2 

(197, 337).  3 

4.2.- E. faecalis 4 

A plethora of molecular methods have been used to type this species including PFGE, 5 

AFLP, and MLST. In contrast to what happen for E. faecium, E. faecalis isolated from 6 

different sources/hosts cannot be grouped using MLST or AFLP. Different studies using 7 

MLST data revealed the presence of many different sequence types in different hosts 8 

including farm animals, companion animals and hospitalized patients (338, 339). 9 

Moreover, some sequence types are associated with a higher prevalence of antibiotic 10 

resistance, represented by ST2, ST8, ST9, ST16, ST40, and ST87 (303; 339, 340), all of 11 

them being overrepresented in humans. To date, ST16 is recovered from humans and farm 12 

animals, and is considered a zoonotic lineage (25), involved in the spread of resistance to 13 

all antibiotics used in animals including bacitracin, phenicols, oxazolidinones (341). 14 

Clonal outbreaks of E. faecalis ST82, a common cause of amyloid arthropathy in poultry, 15 

have been reported in farms of Denmark, United States, France and Germany (342).  16 

Although the detection of more prevalent E. faecalis STs in distant geographical locations 17 

and different hosts suggest frequent horizontal gene transfer between different host 18 

populations (69, 211, 241, 339, 340, 343), some studies using comparative genomics 19 

discarded global transmission (344).  20 

The incongruence in the topologies of the seven different MLST gene trees revealed this 21 

species was highly recombinogenic (291, 343). Subsequent analysis of the E. faecalis 22 

population structure based on MLST data using a Bayesian analysis of population 23 

structure (BAPS) also yield incongruent results, and confirmed the lack of host specific 24 



33 
 

groups or ecotypes (313, 314). This issue was also demonstrated by studies that 1 

characterized the phylogenetic diversity of E. faecalis using whole genomes 2 

(phylogenomics and cgMLST) of clinical, human commensal, and animal isolates, that 3 

observed the lack of distinct clustering of isolates according to the source (291, 345).  4 

Further whole genome sequence studies are necessary to characterize and describe the 5 

role of animals in the evolution, genetic diversity and population structure of E. faecalis. 6 

 5.- PLASMIDS IN ENTEROCOCCI FROM FOODBORNE AND COMPANION 7 

ANIMALS 8 

Horizontal gene transfer plays a relevant role in the dissemination of antibiotic resistance 9 

in non-human hosts, and plasmids play a central role in this dissemination. Classically 10 

plasmid categorization is based on the presence and diversity of replication (346), which 11 

were established by rep-initiator proteins (rep) scheme (347, 348) identified in Gram 12 

positive species to date. In Figure 1 we show the plasmid content (percentage and 13 

diversity of rep sequences) of the 67 E. faecium and 47 E. faecalis genomes with animal 14 

origin obtained from the WGS database of the NCBI. The enterococcal genomes from 15 

public databases were classified according to their origin (Table 1 suppl), information 16 

obtained from the Pathosystems Resource Integration Center (PATRIC) database (349). 17 

The rep genes obtained by the PlasmidFinder bioinformatics tool (350) belong to plasmid 18 

families with theta (RepaA_N, Inc18, Rep3_small tetha) or rolling-circle replication 19 

(RCR) mechanisms (Figure 1).  20 

Plasmids conferring resistance in enterococci to vancomycin, macrolides, tetracycline, 21 

aminoglycosides, and heavy metals (copper, cadmium, bacitracin zinc) have been 22 

detected in farms that were exposed to antimicrobials used as growth promoters 23 

(avoparcin, virginiamycin, tylosin, or bacitracin zinc), therapeutically (tetracyclines, 24 
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gentamicin, penicillins) or dietary supplements (e.g. copper). Antibiotic resistant 1 

plasmids have also been recovered from areas where selection was not apparent. Some 2 

emblematic examples are transferable vanA in commercial animal husbandry in Michigan 3 

farms, USA, where avoparcin has never been licensed for use in growth promotion (121, 4 

122), or persistent vanA-Inc18 plasmids in Norwegian broiler flocks after the ban of some 5 

antibiotics. These studies suggest alternative routes of selection, introduction and spread 6 

of vanA-type vancomycin resistance, plasmid fitness and other phenomena (351). 7 

5.1.- Plasmids conferring resistance to glycopeptides.  8 

Tn1546 (vanA), the predominant mechanism of glycopeptide resistance in enterococci, 9 

has been successfully disseminated among poultry and swine through plasmids of the 10 

Inc18 and RepA_N families, respectively (352, 353). In poultry, an 18-25kb fragment 11 

that includes the 10.85kb of Tn1546 (vanA), is conserved in Inc18 plasmids detected in 12 

Norwegian broiler flocks for more than one-decade (from 1999 to years after the 13 

avoparcin ban) and in the pIP186, the first Inc18 (vanA) plasmid described in 1986 in a 14 

E. faecium clinical isolate (354, 355). The persistence of vanA plasmids in Norwegian 15 

poultry farms is attributed to the toxin–antitoxin system ω–ɛ–ζ originally described in 16 

pRE25, a plasmid of E. faecalis carrying resistance to different antibiotic families and 17 

prevalent in animal and foods (127, 354). Analysis of the Tn1546 insertion sites and 18 

plasmid backbones made to suggest spread of the vanA transposon across different clonal 19 

lines in the broiler industry (125, 354-356). Bortolaia et al. recently associated the 20 

persistence of glycopeptide resistance in Danish poultry flocks after 15-year of avoparcin 21 

ban with a non-transferable 54kb plasmid in isolates that only confer resistance to 22 

glycopeptides (27). It is of note that broiler flocks raised in Denmark come from parent 23 

birds imported from Sweden, and the high occurrence of VREfm was also observed in 24 

Swedish broiler flocks until 2011 (129). 25 
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In swine, large plasmids belonging to the RepA_N family (150-190kb, reppLG1), which 1 

carry a truncated variant of Tn1546 and tcrB (coding for resistance to copper), have been 2 

detected in a pandemic CC5 E. faecium clone circulating in swine farms of Spain, 3 

Portugal, Denmark, Switzerland and the USA for decades, and in other E. faecium 4 

lineages of pigs and humans, what would suggest transmission (304). These plasmids use 5 

to carry erm(B) gene (macrolide resistance) and, eventually, trcB (copper resistance) (see 6 

below).  7 

Also, sporadic reports have documented the occurrence of strains carrying other vanB or 8 

vanN operons on plasmids in poultry meat (178, 188), game meat or wild game meat 9 

(226). Finally, vancomycin susceptible E. faecalis strains carrying vanC1 on transferable 10 

elements (plasmids, transposons and integrons) have also been reported in cloacal swabs 11 

of broilers (357), and feces of diseased pigs from different farms (358). Transmission of 12 

species-specific vanC1 and vanC2/C3 genes could be currently underestimated given the 13 

high presence of E. gallinarum and E. casseliflavus, respectively, in foodborne animals 14 

(159, 359-360), and the scarcity of studies that screen vanC genes in other different 15 

species. 16 

5.2.- Plasmids conferring resistance to macrolides, streptogramins and 17 

lincosamides.  18 

They have been extensively recovered in enterococci from poultry and porcine farms 19 

where macrolides (spiramycin and tylosin) and streptogramins (virginiamycin) were used 20 

as growth promoters and pleuromutilins (tiamulin and valnemulin) to treat infections in 21 

these animals. Lincomycin, alone or in combination with spectinomycin, have been 22 

widely used to control respiratory and gastrointestinal bacterial pathogens in cattle, swine, 23 

poultry, dogs and cats, with pirlimycin only used to treat bovine mastitis cases. 24 

Clindamycin is a common therapeutic option for topical infections in dogs and cats. 25 
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Macrolides. The most widespread gene that confers resistance to macrolides in 1 

enterococci is erm(B), which is located in different transposons and plasmids in species 2 

of the Enterococcus, Streptococcus, Staphylococcus and Clostridium genera (346, 361). 3 

pRE25, a multidrug resistant plasmid originally recovered from a E. faecalis isolate of a 4 

sausage sample, is the paradigm of the Inc18 family and has greatly contributed to spread 5 

of erm(B) among animals and humans (346, 353, 362). The plasmid encodes resistance 6 

to 12 antimicrobials of five structural classes (macrolides, lincosamides, streptothricin, 7 

chloramphenicol, aminoglycosides) due to the presence of erm(B) (macrolide-8 

lincosamide-streptogramin B), catpIP501 (chloramphenicol) and Tn5405 that comprises the 9 

genes aadE-sat4-aphA3 (aminoglycoside-streptothricin) (363, 364). The genes carried by 10 

pRE25 are present in different animal pathogens, namely, Streptococcus pyogenes, 11 

Streptococcus agalactiae, S. aureus, Bacillus subtilis, Campylobacter coli, Clostridium 12 

perfringens, and Clostridium difficile. The erm(B) gene has also been found in small 13 

plasmids in poultry samples (365), and in large plasmids of food besides other genes as 14 

msr(C) and lnu(B), tet(L) and tet(W) (366). Location in chromosome is also frequent.   15 

The gene erm(A) associated with Tn554, commonly found in staphylococci from swine, 16 

has also been found in streptococci and sporadic isolates of E. faecalis and E. faecium 17 

from pigs, suggesting transfer events (282, 367). More recently, a novel erm(A)-like gene 18 

that confer high level of resistance to erythromycin (MIC>128 µg/ml) has been detected 19 

in Inc18 plasmids with genes encoding resistance to phenicols and oxazolidinones (see 20 

below). This gene differs of the widespread erm(A) gene on Tn554 and the erm(A) gene 21 

formerly called ermTR, predominant in staphylococci and streptococci, respectively (82-22 

85% homology at amino acid level). This erm(A) enterococcal variant has a 116 bp 23 

deletion in the translational attenuator (237).   24 
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Streptogramins. Genes conferring resistance to streptogramins (acetyltransferases 1 

encoded by satG/vatE and satA/vatA genes and ABC transporters by vgb/vgbB), and 2 

macrolides (23rRNA methylases encoded by erm(B), erm(A), erm(C) genes), are 3 

observed in a diversity of plasmids and clonal backgrounds. In addition, vat genes are 4 

often co-transcribed and co-transferred along with vga, vgaB, vgb, vgbB, or erm(B) genes 5 

through transposable elements, some of them, previously observed in staphylococci (364, 6 

368-373). Transferability of vat genes and streptogramin resistance in E. faecium strains 7 

through contaminated pork and chicken meat, raw manure, and surface/ground water has 8 

extensively been documented (374, 375). 9 

Lincosamides. Resistance to this antibiotic family can be due to the presence of genes 10 

coding for ABC transporters or modifying enzymes, most of them located on plasmids 11 

and/or transposable elements. These elements have been extensively documented in 12 

staphylococci, and to a lesser extent in streptococci, Clostridium and other species of 13 

Gram-positive bacteria in animals.  14 

ABC transporters that confer resistance to pleuromutilins, lincosamides, and 15 

streptogramin A antibiotics (PLSA) include the genes vga and vga(A)v, vga(C), vga(E), 16 

vga(E)v, eat(A)v, sal(A), lsa(A), lsa(C), and lsa(E). They frequently appear within 17 

clusters in plasmids or transferable chromosomal regions previously reported in S. aureus 18 

(230). A 8,705 bp region flanked by ISEfa8 and IS1216, and comprising genes coding for 19 

one or more antibiotics, namely lnu(B) (lincosamide), lsa(E) (PLSA), spw 20 

(spectinomycin), aadE (streptomycin), and erm(B) (macrolide-lincosamide-21 

streptogramin B), is common for plasmids of S. aureus (pV7037) and E. faecium (pY13, 22 

pXD4, pXD5) strains recovered from pigs (230, 376, 377). The pY13 plasmid further 23 

contains a copy of the genes lnu(B) (lincosamide), aphA3 (kanamycin/neomycin) and a 24 
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second copy of erm(B), highlighting the redundancy of determinants in settings under 1 

high selective pressure.  2 

Two genes coding for nucleotidyl transferases (lnu), which only confer resistance to 3 

lincosamides, have been described in Enterococcus from swine recovered in Chinese 4 

farms (229, 378). The lnu(G) is part of a 4738 bp functionally active transposon 5 

designated as Tn6260, firstly detected in an E. faecalis isolate of swine orgin; this element 6 

is similar to others of the Tn554 family that includes different antibiotic resistant genes 7 

(378). The lnu(B) has been detected in porcine E. faecium isolates, and it has been found 8 

in a non-conjugative plasmid linked to erm(B), lsa(E), spw, aadE, and aphA3 genes, 9 

which account for resistance to macrolides, lincosamides, streptogramins, pleuromutilins, 10 

streptomycin, spectinomycin, and kanamycin/neomycin (229).  11 

5.3.- Plasmids conferring resistance to phenicols and oxazolidinones 12 

Genes coding for resistance to non-fluorinated phenicols (cat), non-fluorinated and 13 

fluorinated phenicols (fexA, fexB), and to both phenicols and oxazolidinones (cfr, optrA), 14 

have been detected in enterococcal species from animals, foods and humans.  15 

The production of chloramphenicol acetyltransferase (or CAT) enzymes seems to be the 16 

main mechanism of resistance to chloramphenicol although the number of studies 17 

addressing the diversity and the genetic context of cat genes in Enterococcus is still 18 

scarce. The predominant cat variants are cat(A-7), associated with pRE25-like plasmids 19 

of the Inc18 family which are widely disseminated in food and farm animals, 20 

predominantly poultry (241); and cat(A-8), also known as catpC223, associated with pC223 21 

plasmids originally detected in S. aureus that are now predominant in E. faecalis from 22 

swine. This gene eventually appears in tandem with tet(M) and tet(L) genes within the 23 

transposon Tn6245 and relics of this transposon have been observed in plasmids that also 24 
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carry fexA and oprtA (237). Although isolates positive for the cat(A-9) gene have been 1 

recently identified in E. faecalis from swine, their genetic context has not been 2 

characterized (Ana Freitas, personal communication). 3 

The florfenicol exporter gene fexB was initially detected in non-conjugative plasmids of 4 

E. faecium, E. faecalis and E. hirae isolates collected in swine farms heavily exposed to 5 

florfenicol in China (379). These plasmids share common regions with the backbone of 6 

Inc18 plasmid derivatives (e.g. pVEF4), widely disseminated in Norwegian poultry farms 7 

(355). The fexB gene is bracketed by IS1216, and would have been acquired by 8 

widespread pRE25-like plasmids, as occurred for other antimicrobial resistant genes 9 

flanked by this IS. The fexB gene has also been identified in enterococci from other farm 10 

animals (bovine) and aquacultures, although the plasmids are not still characterized (380, 11 

241). A different epidemiological landscape occurs for the fexA gene, which is located on 12 

plasmids (241) and chromosome (236) of enterococcal animal isolates, often in tandem 13 

with the optrA gene (237, 241) or the cfr gene (235). The fexA gene is inserted in the 14 

emblematic Tn554 of staphylococci, although in enterococci traces of this transposon 15 

might be absent as a consequence of different events of horizontal gene transfer (237).  16 

Enterococcal plasmids carrying optrA have been detected in poultry, swine and humans. 17 

Despite differences in size (30-80 kb) and the backbone, all share similar regions 18 

upstream and downstream the optrA gene (236, 237, 241). It is of note the presence of a 19 

novel erm(A)-like gene that confer high level of resistance to erythromycin (237). The 20 

genetic context of optrA is flanked by copies of IS1216 in the same or opposite direction, 21 

which determine the mobility.  22 

Conjugative and non-conjugative plasmids carrying the cfr gene flanked by different IS 23 

(IS1216, ISEnfa4, ISEnfa5, IS256), have been described in animal isolates of different 24 

Gram-positive species, including enterococci. The non-conjugative pEF-01 (32.2 kb) 25 
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plasmid represents the first description of a cfr-plasmid in this bacterial genus and was 1 

identified in a fecal E. faecalis isolate of bovine origin collected in 2009 in a Chinese 2 

farm (232). This plasmid has three Rep proteins of the Inc18 and Rep3 plasmid families, 3 

and 9kb and 6kb regions which exhibit high similarity with the backbone of vanA Inc18 4 

plasmids (pVEF1-2-3), widely isolated in poultry farms (232). Moreover, the cfr gene 5 

was flanked by IS1216 that would facilitate recombination processes, and plasmid also 6 

contains the fexA gene, that provides resistance to phenicols. Conjugative plasmids 7 

carrying the cfr bracketed by ISEnfa4 copies, were isolated from E. thailandicus and E. 8 

faecalis from swine Chinese farms. These are closely related to other emblematic Inc18 9 

plasmid, the pAMb1, and contained erm(B) and erm(A) genes, conferring the MLSB 10 

phenotype, and also the ω-ε-ζ toxin-antitoxin module, which may promote the persistence 11 

of plasmids by encoding a system that kills or prevents the growth of plasmid-free cell 12 

(55). This genetic context has also been detected in streptococci and staphylococci and 13 

pointed out of independent acquisition events for cfr gene. The cfr gene bracketed by two 14 

copies of ISEnfa5, has been documented in E. gallinarum and E. casseliflavus of swine 15 

orgin (235). 16 

5.4.- Plasmids conferring resistance to bacitracin. 17 

Bacitracin has been used as an animal growth promoter in China, and recent reports 18 

documented E. faecalis isolates with high-level resistance to this antibiotic 19 

(MIC ≥ 256 μg/ml), due to the presence of the bcrABDR cluster, composed by the bcrABD 20 

operon and its regulatory gene bcrR. The cluster either bracketed by two, one (or none) 21 

ISEnfa1 copies is located on transferable plasmids (341) or chromosome. The structure 22 

ISEnfa1-bcrABDR-ISEnfa1 may be circulating and been transferred to other species by 23 

IS-mediated recombination. A multiresistant 79 kb pheromone responsive plasmid 24 

carrying this ISEnfa1-bcrABDR-ISEnfa1 platform as well as optrA, fexA, Tn6425 25 
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(catpC223-tetM-tetL), Tn5405 (aph-sat-str) and genes for resistance to copper and 1 

cadmium seems to be disseminated in Chinese farms (341), frequently associated with 2 

ST16 E. faecalis. This bcrABDR cluster is also common in E. cecorum, a chicken 3 

commensal species (341).  4 

5.5.- Plasmids conferring resistance to copper. 5 

Transferable resistance to copper (tcrB) in enterococci has been detected in piglets, 6 

calves, poultry, and also in humans of European, Asian, Australian and American 7 

countries (148, 331, 368, 381-383). Plasmids carrying tcrB are identified in intensively 8 

copper-supplemented livestock species, but plasmids with additional linkage with 9 

erythromycin (erm(B)) and/or vancomycin resistance (vanA) genes has only been 10 

observed in heavily copper-exposed swine (often with different copper compounds) of 11 

European countries where avoparcin was used as growth enhancer in the 1990s (148, 329, 12 

381, 383, 384). The plasmids were detected in different enterococcal species (E. faecium, 13 

E. faecalis, E. gallinarum, E. casseliflavus, E. mundtii, E. hirae), and conjugation has 14 

been experimentally demonstrated from E. faecalis to E. faecium (381). Copper fed to 15 

feedlot cattle at a growth promotion concentration (10× basal requirement) was associated 16 

with increased frequencies of tcrB-positive, macrolide-resistant-erm(B) and eventually, 17 

tetracycline resistant-tet(M) enterococci; on the other hand, copper susceptibilities was 18 

not increased in piglets in which the effect of in-feed tylosin or chlortetracycline was 19 

evaluated (382, 385). Co-transmission of tcrB and erm(B) genes between E. hirae from 20 

a sediment-derived livestock and E. faecalis has been experimentally demonstrated 21 

(386). A recent analysis of whole genome sequences of E. faecalis from copper-22 

supplemented Danish pigs also documented the presence of a chromosomal cluster of 23 

genes involved in susceptibility to copper, including the tcrYAZB operon, in three of 24 

six isolates analyzed, all containing plasmids (387). A detailed characterization of this 25 
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chromosomal region was not provided, although other authors, who also identified 1 

redundancy of copper genes in chromosome, demonstrated its co-transferability with 2 

ampicillin resistance (331).  3 

6.- CONCLUDING REMARKS 4 

This review summarizes the current knowledge concerning the epidemiology and popu-5 

lation structure of antibiotic resistant Enterococcus species from foodborne-, wild and 6 

companion animals.  Members of this genus are normal components of the intestinal mi-7 

crobiota of animals and some species may also be aetiological agents of a wide variety of 8 

infections as E. faecalis ST16 (considered a zoonotic pathogen), or ST82 (etiological 9 

agent of the amyloid encephalopathy in chickens). 10 

Enterococcus are frequent contaminants on foods (especially poultry meat), although the 11 

risk of transmission from animals to humans through the food chain is based on indirect 12 

evidence and thus, the bacterial load necessary to colonize human gut remains greatly 13 

unknown.  Food and animal trade seem have contributed to the spread of certain patho-14 

genic lineages (E. faecalis ST82 and ST16 lineages) or multidrug resistant strains. Other 15 

species adapted to animals seem to act as important reservoirs of adaptive traits (E. ceco-16 

rum). However, transmission of antimicrobial resistance by horizontal gene transfer 17 

events represent the main risk of contaminated foods by enterococci. Genes encoding 18 

resistance to vancomycin, macrolides, phenicols, and linezolid have been extensively 19 

documented in animals, frequently in response to heavy selection by antimicrobials (an-20 

tibiotics and heavy metals) used in prophylaxis or as growth promoters. Although the 21 

same genes and plasmids may be present also in humans and animals, particular plasmid 22 

variants are often documented in farms, suggesting certain host specificity and transmis-23 

sion at local level. Deep analysis of antimicrobial resistant genes reveals a wide diversity 24 

of alleles (e.g. erm(A), optrA, cfr), and also the frequent presence of IS (e.g.IS1216) that 25 
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highlight the risk of frequent and independent acquisition and selection events of antimi-1 

crobial resistance in farms. More studies are necessary to establish the risks of the emer-2 

gence and transmission of antibiotic resistant enterococci from animals to humans. 3 
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