Frequenin/NCS-1 and the Ca2+-channel α1-subunit co-regulate synaptic transmission and nerve-terminal growth

  1. Dason, Jeffrey S. 1
  2. Romero-Pozuelo, Jesús 2
  3. Marin, Leo 1
  4. Iyengar, Balaji G. 1
  5. Klose, Markus K. 1
  6. Ferrús, Alberto 2
  7. Atwood, Harold L. 1
  1. 1 Department of Physiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
  2. 2 Instituto Cajal, CSIC, Ave. Dr Arce 37, Madrid 28002, Spain
Revista:
Journal of Cell Science

ISSN: 1477-9137 0021-9533

Año de publicación: 2009

Volumen: 122

Número: 22

Páginas: 4109-4121

Tipo: Artículo

DOI: 10.1242/JCS.055095 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Journal of Cell Science

Resumen

Drosophila Frequenin (Frq) and its mammalian and worm homologue, NCS-1, are Ca2+-binding proteins involved in neurotransmission. Using site-specific recombination in Drosophila, we created two deletions that removed the entire frq1 gene and part of the frq2 gene, resulting in no detectable Frq protein. Frq-null mutants were viable, but had defects in larval locomotion, deficient synaptic transmission, impaired Ca2+ entry and enhanced nerve-terminal growth. The impaired Ca2+ entry was sufficient to account for reduced neurotransmitter release. We hypothesized that Frq either modulates Ca2+ channels, or that it regulates the PI4Kpathway as described in other organisms. To determine whether Frq interacts with PI4K with consequent effects on Ca2+ channels, we first characterized a PI4K-null mutant and found that PI4K was dispensable for synaptic transmission and nerveterminal growth. Frq gain-of-function phenotypes remained present in a PI4K-null background. We conclude that the effects of Frq are not due to an interaction with PI4K. Using flies that were trans-heterozygous for a null frq allele and a null cacophony (encoding the 1-subunit of voltage-gated Ca2+ channels) allele, we show a synergistic effect between these proteins in neurotransmitter release. Gain-of-function Frq phenotypes were rescued by a hypomorphic cacophony mutation. Overall, Frq modulates Ca2+ entry through a functional interaction with the 1 voltage-gated Ca2+-channel subunit; this inter

Referencias bibliográficas

  • Atwood, H. L. (2006). Neuroscience. Gatekeeper at the synapse. Science312, 1008-1009.
  • Atwood, H. L., Govind, C. K. and Wu, C. F. (1993). Differential ultrastructure of synaptic terminals on ventral longitudinal abdominal muscles in Drosophila larvae. J. Neurobiol.24, 1008-1024.
  • Augustine, G. J. and Charlton, M. P. (1986). Calcium dependence of presynaptic calcium current and post-synaptic response at the squid giant synapse. J. Physiol.381, 619-640.
  • Bahi, N., Friocourt, G., Carrié, A., Graham, M. E., Weiss, J. L., Chafey, P., Fauchereau, F., Burgoyne, R. D. and Chelly, J. (2003). IL1 receptor accessory protein like, a protein involved in X-linked mental retardation, interacts with neuronal calcium sensor-1 and regulates exocytosis. Hum. Mol. Genet.12, 1415-1425.
  • Bai, J., He, F., Novikova, S. I., Undie, A. S., Dracheva, S., Haroutunian, V. and Lidow, M. S. (2004). Abnormalities in the dopamine system in schizophrenia may lie in altered levels of dopamine receptor-interacting proteins. Biol. Psychiatry56, 427-440.
  • Bartlett, S. E., Reynolds, A. J., Weible, M., Jeromin, A., Roder, J. and Hendry, I. A. (2000). PtdIns 4-kinasebeta and neuronal calcium sensor-1 co-localize but may not directly associate in mammalian neurons. J. Neurosci. Res.62, 216-224.
  • Bélair, E. L., Vallée, J. and Robitaille, R. (2005). Long-term in vivo modulation of synaptic efficacy at the neuromuscular junction of Rana pipiens frogs. J. Physiol.569, 163-178.
  • Bourne, Y., Dannenberg, J., Pollmann, V., Marchot, P. and Pongs, O. (2001). Immunocytochemical localization and crystal structure of human frequenin (neuronal calcium sensor 1). J. Biol. Chem.276, 11949-11955.
  • Brill, J. A., Hime, G. R., Scharer-Schuksz, M. and Fuller, M. T. (2000). Phospholipid kinase regulates actin organization and intercellular bridge formation during germline cytokinesis. Development27, 3855-3864.
  • Brooks, I. M., Felling, R., Kawasaki, F. and Ordway, R. W. (2003). Genetic analysis of a synaptic calcium channel in Drosophila: intragenic modifiers of a temperature-sensitive paralytic mutant of cacophony. Genetics164, 163-171.
  • Burgoyne, R. D., O'Callaghan, D. W., Hasdemir, B., Haynes, L. P. and Tepikin, A. V. (2004). Neuronal Ca2+-sensor proteins: multitalented regulators of neuronal function. Trends Neurosci.27, 203-209.
  • de Barry, J., Janoshazi, A., Dupont, J. L., Procksch, O., Chasserot-Golaz, S., Jeromin, A. and Vitale, N. (2006). Functional implication of neuronal calcium sensor-1 and phosphoinositol 4-kinase-beta interaction in regulated exocytosis of PC12 cells. J. Biol. Chem.281, 18098-18111.
  • Dickman, D. K., Kurshan, P. T. and Schwarz, T. L. (2008). Mutations in a Drosophila α2δ voltage-gated calcium channel subunit reveal a crucial synaptic function. J. Neurosci.28, 31-38.
  • Dietzl, G., Chen, D., Schnorrer, F., Su, K. C., Barinova, Y., Fellner, M., Gasser, B., Kinsey, K., Oppel, S., Scheiblauer, S. et al. (2007). A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature448, 151-156.
  • Dodge, F. A. and Rahamimoff, R. (1967). Co-operative action a calcium ions in transmitter release at the neuromuscular junction. J. Physiol.193, 419-432.
  • Gomez, M., De Castro, E., Guarin, E., Sasakura, H., Kuhara, A., Mori, I., Bartfai, T., Bargmann, C. I. and Nef, P. (2001). Ca2+ signaling via the neuronal calcium sensor-1 regulates associative learning and memory in C. elegans.Neuron30, 241-248.
  • Gromada, J., Bark, C., Smidt, K., Efanov, A. M., Janson, J., Mandic, S. A., Webb, D. L., Zhang, W., Meister, B., Jeromin, A. et al. (2005). Neuronal calcium sensor-1 potentiates glucose-dependent exocytosis in pancreatic beta cells through activation of phosphatidylinositol 4-kinase beta. Proc. Natl. Acad. Sci. USA102, 10303-10308.
  • Hendricks, K. B., Wang, B. Q., Schnieders, E. A. and Thorner, J. (1999). Yeast homologue of neuronal frequenin is a regulator of phosphatidylinositol-4-OH kinase. Nat. Cell. Biol.1, 234-241.
  • Hui, H., McHugh, D., Hannan, M., Zeng, F., Xu, S. Z., Khan, S. U., Levenson, R., Beech, D. J. and Weiss, J. L. (2006). Calcium-sensing mechanism in TRPC5 channels contributing to retardation of neurite outgrowth. J. Physiol.572, 165-172.
  • Hui, K. and Feng, Z. P. (2008). NCS-1 differentially regulates growth cone and somata calcium channels in Lymnaea neurons. Eur. J. Neurosci.27, 631-643.
  • Hui, K., Fei, G. H., Saab, B. J., Su, J., Roder, J. C. and Feng, Z. P. (2007). Neuronal calcium sensor-1 modulation of optimal calcium level for neurite outgrowth. Development134, 4479-4489.
  • Huttner, I. G., Strahl, T., Osawa, M., King, D. S., Ames, J. B. and Thorner. J. (2003). Molecular interactions of yeast frequenin (Frq1) with the phosphatidylinositol 4-kinase isoform, Pik1. J Biol. Chem.278, 4862-4874.
  • Jeromin, A., Shayan, A. J., Msghina, M., Roder, J. and Atwood, H. L. (1999). Crustacean frequenins: molecular cloning and differential localization at neuromuscular junctions. J. Neurobiol.41, 165-175.
  • Kawasaki, F., Collins, S. C. and Ordway. R. W. (2002). Synaptic calcium-channel function in Drosophila: analysis and transformation rescue of temperature-sensitive paralytic and lethal mutations of cacophony.J. Neurosci.22, 5856-5864.
  • Kittel, R. J., Wichmann, C., Rasse, T. M., Fouquet, W., Schmidt, M., Schmid, A., Wagh, D. A., Pawlu, C., Kellner, R. R., Willig, K. I. et al. (2006). Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science312, 1051-1054.
  • Koh, P. O., Undie, A. S., Kabbani, N., Levenson, R., Goldman-Rakic and P. S., Lidow, M. S. (2003). Up-regulation of neuronal calcium sensor-1 (NCS-1) in the prefrontal cortex of schizophrenic and bipolar patients. Proc. Natl. Acad. Sci. USA100, 313-317.
  • Koizumi, S., Rosa, P., Willars, G. B., Challiss, R. A., Taverna, E., Francolini, M., Bootman, M. D., Lipp, P., Inoue, K., Roder, J. et al. (2002). Mechanisms underlying the neuronal calcium sensor-1-evoked enhancement of exocytosis in PC12 cells. J. Biol. Chem.277, 30315-30324.
  • Kulkarni, S. J. and Hall, J. C. (1987). Behavioral and cytogenetic analysis of the cacophony courtship song mutant and interacting genetic variants in Drosophila melanogaster.Genetics115, 461-475.
  • Kurdyak, P., Atwood, H. L., Stewart, B. A. and Wu, C. F. (2002). Differential physiology and morphology of motor axons to ventral longitudinal muscles in larval Drosophila. J. Comp. Neurol.350, 463-472.
  • Lautermilch, N. J., Few, A. P., Scheuer, T. and Catterall, W. A. (2005). Modulation of CaV2.1 channels by the neuronal calcium-binding protein visinin-like protein-2. J. Neurosci.25, 7062-7070.
  • Lin, D. M. and Goodman, C. S. (1994). Ectopic and increased expression of Fasciclin II alters motoneuron growth cone guidance. Neuron13, 507-523.
  • Long, A. A., Kim, E., Leung, H. T., Woodruff, E., 3rd, An, L., Doerge, R. W., Pak, W. L. and Broadie, K. (2008). Presynaptic calcium channel localization and calcium-dependent synaptic vesicle exocytosis regulated by the Fuseless protein. J. Neurosci.28, 3668-3682.
  • Ly, C. V., Yao, C. K., Verstreken, P., Ohyama, T. and Bellen, H. J. (2008). straightjacket is required for the synaptic stabilization of cacophony, a voltage-gated calcium channel alpha1 subunit. J. Cell Biol.181, 157-170.
  • Macleod, G. T., Hegstrom-Wojtowicz, M., Charlton, M. P. and Atwood, H. L. (2002). Fast calcium signals in Drosophila motor neuron terminals. J. Neurophysiol.88, 2659-2663.
  • Macleod, G. T., Marin, L., Charlton, M. P. and Atwood, H. L. (2004). Synaptic vesicles: test for a role in presynaptic calcium regulation. J. Neurosci.24, 2496-2505.
  • Macleod, G. T., Chen, L., Karunanithi, S., Peloquin, J. B., Atwood, H. L., McRory, J. E., Zamponi, G. W. and Charlton, M. P. (2006). The Drosophila cacts2 mutation reduces presynaptic Ca2+ entry and defines an important element in Cav2.1 channel inactivation. Eur. J. Neurosci.23, 3230-3244.
  • Mallart, A. (1993). Calcium-dependent modulation of the facilitation of transmitter release at neuromuscular junctions of Drosophila. J. Physiol. Paris87, 83-88.
  • Mallart, A., Angaut-Petit, D., Bourret-Poulain, C. and Ferrus, A. (1991). Nerve terminal excitability and neuromuscular transmission in T(X;Y)V7 and Shaker mutants of Drosophila melanogaster. J. Neurogenet.7, 75-84.
  • McFerran, B. W., Weiss, J. L. and Burgoyne, R. D. (1999). Neuronal Ca(2+) sensor 1. Characterization of the myristoylated protein, its cellular effects in permeabilized adrenal chromaffin cells, Ca(2+)-independent membrane association, and interaction with binding proteins, suggesting a role in rapid Ca(2+) signal transduction. J. Biol. Chem.274, 30258-30265.
  • O'Callaghan, D. W., Ivings, L., Weiss, J. L., Ashby, M. C., Tepikin, A. V. and Burgoyne, R. D. (2002). Differential use of myristoyl groups on neuronal calcium sensor proteins as a determinant of spatio-temporal aspects of Ca2+ signal transduction. J. Biol. Chem.277, 14227-14237.
  • Olafsson, P., Wang, T. and Lu, B. (1995). Molecular cloning and functional characterization of the Xenopus Ca2+-binding protein frequenin. Proc. Natl. Acad. Sci. USA92, 8001-8005.
  • Pan, C. Y., Jeromin, A., Lundstrom, K., Yoo, S. H., Roder, J. and Fox, A. P. (2002). Alterations in exocytosis induced by neuronal Ca2+ sensor-1 in bovine chromaffin cells. J. Neurosci.22, 2427-2433.
  • Parkes, T. L., Elia, A. J., Dickinson, D., Hilliker, A. J., Phillips, J. P. and Boulianne, G. L. (1998). Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nat. Genet.19, 171-174.
  • Parks, A. L., Cook, K. R., Belvin, M., Dompe, N. A., Fawcett, R., Huppert, K., Tan, L. R., Winter, C. G., Bogart, K. P., Deal, J. E. et al. (2004). Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome. Nat. Genet.36,,288-292.
  • Pongs, O., Lindemeier, J., Zhu, X. R., Theil, T., Engelkamp, D., Krah-Jentgens, I., Lambrecht, H. G., Koch, K. W., Schwemer, J., Rivosecchi, R. et al. (1993). Frequenin-a novel calcium-binding protein that modulates synaptic efficacy in the Drosophila nervous system. Neuron.11, 15-28.
  • Rajebhosale, M., Greenwood, S., Vidugiriene, J., Jeromin, A. and Hilfiker, S. (2003). Phosphatidylinositol 4-OH kinase is a downstream target of neuronal calcium sensor-1 in enhancing exocytosis in neuroendocrine cells. J Biol. Chem.278, 6075-6084.
  • Rieckhof, G. E., Yoshihara, M., Guan, Z. and Littleton, J. T. (2003). Presynaptic N-type calcium channels regulate synaptic growth. J. Biol. Chem.278, 41099-41108.
  • Rivosecchi, R., Pongs, O., Theil, T. and Mallart, A. (1994). Implication of frequenin in the facilitation of transmitter release in Drosophila. J. Physiol.474, 223-232.
  • Romero-Pozuelo, J., Dason, J. S., Atwood, H. L. and Ferrús, A. (2007). Chronic and acute alterations in the functional levels of Frequenins 1 and 2 reveal their roles in synaptic transmission and axon terminal morphology. Eur. J. Neurosci.26, 2428-2443.
  • Scalettar, B. A., Rosa, P., Taverna, E., Francolini, M., Tsuboi, T., Terakawa, S., Koizumi, S., Roder, J. and Jeromin, A. (2002). Neuronal calcium sensor-1 binds to regulated secretory organelles and functions in basal and stimulated exocytosis in PC12 cells. J. Cell Sci.115, 2399-2412.
  • Sippy, T., Cruz-Martin, A., Jeromin, A. and Schweizwer, F. E. (2003). Acute changes in short-term plasticity at synapses with elevated levels of neuronal calcium sensor-1. Nat. Neurosci.6, 1031-1038.
  • Stewart, B. A., Schuste, C. M., Goodman, C. S. and Atwood, H. L. (1996). Homeostasis of synaptic transmission in Drosophila with genetically altered nerve terminal morphology. J. Neurosci.16, 3877-3886.
  • Strahl, T., Grafelmann, B., Dannenberg, J., Thorner, J. and Pongs, O. (2003). Conservation of regulatory function in calcium-binding proteins: human frequenin (neuronal calcium sensor-1) associates productively with yeast phosphatidylinositol 4-kinase isoform, Pik1. J Biol. Chem.278, 49589-49599.
  • Tanouye, M. A., Ferrus, A. and Fujita, S. C. (1981). Abnormal action potentials associated with the Shaker complex locus of Drosophila.Proc. Natl. Acad. Sci. USA78, 6548-6552.
  • Taverna, E., Francolini, M., Jeromin, A., Hilfiker, S., Roder, J. and Rosa, P. (2002). Neuronal calcium sensor 1 and phosphatidylinositol 4-OH kinase beta interact in neuronal cells and are translocated to membranes during nucleotide-evoked exocytosis. J. Cell Sci.115, 3909-3922.
  • Thibault, S. T., Singer, M. A., Miyazaki, W. Y., Milash, B., Dompe, N. A., Singh, C. M., Buchholz, R., Demsky, M., Fawcett, R., Francis-Lang, H. L. et al. (2004). A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nat. Genet.36, 283-287.
  • Tsujimoto, T., Jeromin, A., Saitoh, N., Roder, J. C. and Takahashi, T. (2002). Neuronal calcium sensor 1 and activity-dependent facilitation of P/Q-type calcium currents at presynaptic nerve terminals. Science295, 2276-2279.
  • Wagh, D. A., Rasse, T. M., Asan, E., Hofbauer, A., Schwenkert, I., Dürrbeck, H., Buchner, S., Dabauvalle, M. C., Schmidt, M., Qin, G. et al. (2006). Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila.Neuron.49, 833-844.
  • Wang, C. Y., Yang, F., He, X., Chow, A., Du, J., Russell, J. T. and Lu, B. (2001). Ca2+ binding protein frequenin mediates GDNF-induced potentiation of Ca2+ channels and transmitter release. Neuron32, 99-112.
  • Weiss, J. L., Archer, D. A. and Burgoyne, R. D. (2000). Neuronal Ca2+ sensor-1/frequenin functions in an autocrine pathway regulating Ca2+ channels in bovine adrenal chromaffin cells. J. Biol. Chem.275, 40082-40087.
  • Wu, L., Bauer, C. S., Zhen, X. G., Xie, C. and Yang, J. (2002). Dual regulation of voltage-gated calcium channels by PtdIns(4,5)P2. Nature419, 947-952.
  • Xing, B., Ashleigh Long, A., Harrison, D. A. and Cooper, R. L. (2005). Developmental consequences of neuromuscular junctions with reduced presynaptic calcium channel function. Synapse57, 132-147.
  • Zhao, X., Várnai, P., Tuymetova, G., Balla, A., Tóth, Z. E., Oker-Blom, C., Roder, J., Jeromin, A. and Balla, T. (2001). Interaction of neuronal calcium sensor-1 (NCS-1) with phosphatidylinositol 4-kinase beta stimulates lipid kinase activity and affects membrane trafficking in COS-7 cells. J. Biol. Chem.276, 40183-40189.