Leishmaniasis: The Biology of a Parasite

  1. Díaz, Emilia
  2. Ponte-Sucre, Alicia
Drug Resistance in Leishmania Parasites

ISBN: 9783319741857 9783319741864

Year of publication: 2018

Pages: 1-16

Type: Book chapter

DOI: 10.1007/978-3-319-74186-4_1 GOOGLE SCHOLAR lock_openOpen access editor
Institutional repository: lock_openOpen access Postprint

Bibliographic References

  • Pace D. Leishmaniasis. J Infect. 2014;69(1):S10–8.
  • Davies CR, Reithinger R, Campbell-Lendrum D, Feliciangeli D, et al. The epidemiology and control of leishmaniasis in Andean countries. Cad Saude Publica. 2000;16:925–50.
  • Croft SL, Sundar S, Fairlamb AH. Drug resistance in leishmaniasis. Clin Microbiol Rev. 2006;19:111–26.
  • Rotureau B. Are new world leishmaniases becoming anthroponoses? Med Hypotheses. 2006;67:1235–41.
  • Ready PD. Leishmaniasis emergence in Europe. Euro Surveill. 2010;11:19505.
  • World Health Organization (WHO, 2016) Weekly epidemiological record. http://www.who.int/wer , 2016, 91, 285–296.
  • Karimkhani C, Wanga V, Coffeng LE, Naghavi P, et al. Global burden of cutaneous leishmaniasis: a cross-sectional analysis from the Global Burden of Disease Study 2013. Lancet Infect Dis. 2016;6:584–91. https://doi.org/10.1016/S1473-3099(16)00003-7
  • Alvar J, Vélez ID, Bern C, Herrero M, et al. Leishmaniasis worldwide and global estimates of its incidence. WHO Leishmaniasis Control Team. PLoS One. 2012;7(5):e35671.
  • World Health Organization Technical Report Series 949 (2015) Control of the leishmaniasis 2010. http://whqlibdoc.who.int/trs/WHO_TRS_949_eng.pdf .
  • Ready PD. Epidemiology of visceral leishmaniasis. Clin Epidemiol. 2014;6:147–54.
  • Desjeux P. Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis. 2004;27:305–18.
  • Georgiadou SP, Makaritsis KP, Dalekos GN. Leishmaniasis revisited: current aspects on epidemiology, diagnosis and treatment. J Transl Int Med. 2015;3(2):43–50.
  • Alvar J, Aparicio P, Aseffa A, Den Boer M, et al. The relationship between leishmaniasis and AIDS: the second 10 years. Clin Microbiol Rev. 2008;21:334–59.
  • Malafaia G. Protein-energy malnutrition as a risk factor for visceral leishmaniasis: a review. Parasite Immunol. 2009;31:587–96.
  • Saporito L, Giammanco G, De Grazia S, Colomba C. Visceral leishmaniasis: host–parasite interactions and clinical presentation in the immunocompetent and in the immunocompromised host. Int J Infect Dis. 2013;17:e572–6.
  • Sharma U, Singh S. Immunobiology of leishmaniasis. Indian J Exp Biol. 2009;47:412–23.
  • Ameen M. Cutaneous and mucocutaneous leishmaniasis: emerging therapies and progress in disease management. Expert Opin Pharmacother. 2010;11:557–69.
  • Romero GA, Boelaert M. Control of visceral leishmaniasis in Latin America a systematic review. PLoS Negl Trop Dis. 2010;4:e584.
  • Ponte-Sucre A. Physiological consequences of drug resistance in Leishmania and their relevance for chemotherapy. Kinetoplastid Biol Dis. 2003;2:14.
  • Cattand P, Desjeux P, Guzmán MJ, Jannin J, et al. Tropical diseases lacking adequate control measures: dengue, leishmaniasis, and African trypanosomiasis. In: Disease control priorities in developing countries. 2nd ed. New York: Oxford University Press; 2006. p. 451–66.
  • Feliciangeli MD, Rabinovich J. Abundance of Lutzomyia ovallesi but not Lu. gomezi (Diptera: Psychodidae) correlated with cutaneous leishmaniasis incidence in north-central Venezuela. Med Vet Entomol. 1998;12:121–31.
  • Davies CR, Reithinger R, Campbell-Lendrum D, Feliciangeli D, et al. The epidemiology and control of leishmaniasis in Andean countries. Cad Saude Publica. 2000;16(4):925–50.
  • Curtis CF. Personal protection methods against vectors of disease. Rev Med Vet. 1992;80:543–53.
  • Thakur CP. Leishmaniasis research, the challenges ahead. Indian J Med Res. 2006;123:193–4.
  • Lerner EA, Ribeiro JM, Nelson RJ, Lerner MR. Isolation of maxadilan, a potent vasodilatory peptide from the salivary glands of the sand-fly Lutzomyia longipalpis. J Biol Chem. 1991;261:11234–6.
  • Castro-Sousa F, Paranhos-Silva M, Sherlock I, Paixão MS, et al. Dissociation between vasodilation and Leishmania infection-enhancing effects of sand fly saliva and maxadilan. Mem Inst Oswaldo Cruz. 2001;96:997–9.
  • Belkaid Y, Kamhawi S, Modo G, Valenzuela J, et al. Development of a natural model of cutaneous leishmaniasis: powerful effects of vector saliva and saliva pre-exposure on the long-term outcome of Leishmania major infection in the mouse ear dermis. J Exp Med. 1998;188:1941–53.
  • Delgado O, Guevara P, Silva S, Belfort E, et al. Follow up of human accidental infection by Leishmania braziliensis using conventional immunologic techniques and polymerase chain reaction. Am J Trop Med Hyg. 1996;51:267–72.
  • Bates PA, Rogers ME. New insights into the developmental biology and transmission mechanisms of Leishmania. Curr Mol Med. 2004;4:601–9.
  • Peters NC, Egen JG, Secundino N, Debrabant A, et al. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science. 2008;321:970–4.
  • Ritter U, Frischknecht F, van Zandbergen G. Are neutrophils important host cells for Leishmania parasites? Trends Parasitol. 2009;25:505–10.
  • Killick-Kendrick R, Wallbanks KR, Molyneux DH, Lavin DR. The ultrastructure of Leishmania major in the foregut and proboscis of Phlebotomus papatasi. Parasitol Res. 1988;74(6):586–90.
  • Ridley D. The pathogenesis of cutaneous leishmaniasis. Trans R Soc Trop Med Hyg. 1999;73:156–60.
  • Chang KP, Reed SG, McGwire BS, Soong L. Leishmania model for microbial virulence: the relevance of parasite multiplication and patho-antigenicity. Acta Trop. 2003;85:375–90.
  • Wheeler RJ. Use of chiral cell shape to ensure highly directional swimming in trypanosomes. PLoS Comput Biol. 2017;13(1):e1005353.
  • Gadelha C, Wickstead B, Gull K. Flagellar and ciliary beating in trypanosome motility. Cell Motil Cytoskeleton. 2007;64:629–43.
  • Rotureau B, Morales MA, Bastin P, Spath G. The flagellum-mitogen-activated protein kinase connection in Trypanosomatids: a key sensory role in parasite signaling and development? Cell Microbiol. 2009;11(5):710–8.
  • Forestier CL, Machu C, Loussert C, Pescher P, et al. Imaging host cell-Leishmania interaction dynamics implicates parasite motility, lysosome recruitment, and host cell wounding in the infection process. Cell Host Microbe. 2011;9:319–30.
  • Díaz E, Köhidai L, Ríos A, Vanegas O, et al. Leishmania braziliensis: cytotoxic, cytostatic and chemotactic effects of poly-lysine-methotrexate-conjugates. Exp Parasitol. 2013;135(1):134–41.
  • Ponte-Sucre A. Leishmaniasis, the biology of a parasite. In: Ponte-Sucre A, Diaz E, Padrón-Nieves M, editors. Drug resistance in Leishmania parasites. Consequences, molecular mechanisms, and possible treatments. Wien: Springer; 2013. p. 1–12.
  • de Toledo JS, Vasconcelos EJR, Ferreira TR, Cruz AK. Using genomic information to understand Leishmania biology. Open Parasitol J. 2010;4:156–66.
  • Akopyants NS, Kimblin N, Secundino N, Patrick R, et al. Demonstration of genetic exchange during cyclical development of Leishmania in the sand fly vector. Science. 2009;324:265–8.
  • Rougeron V, De Meeûs T, Hide M, Waleckx E, et al. Extreme inbreeding in Leishmania braziliensis. Proc Natl Acad Sci USA. 2009;106:10224–9.
  • Sterkers Y, Crobu L, Lachaud L, Pagès M, et al. Parasexuality and mosaic aneuploidy in Leishmania: alternative genetics. Trends Parasitol. 2014;30(9):429–35.
  • Mannaert A, Downing T, Imamura H, Dujardin JC. Adaptive mechanisms in pathogens: universal aneuploidy in Leishmania. Trends Parasitol. 2012;28(9):370–6.
  • Peacock CS, Seeger K, Harris D, Murphy L, et al. Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet. 2007;39:839–47.
  • Downing T, Imamura H, Decuypere S, Clark TG, et al. Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Res. 2011;21(12):2143–56. https://doi.org/10.1101/gr.123430.111
  • Rogers MB, Hilley JD, Dickens NJ, Wilkes J, et al. Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Res. 2011;21(12):2129–42. https://doi.org/10.1101/gr.122945.111
  • Real F, Vidal RO, Carazzolle MF, Mondego JM, et al. The genome sequence of Leishmania (Leishmania) amazonensis: functional annotation and extended analysis of gene models. DNA Res. 2013;20(6):567–81. https://doi.org/10.1093/dnares/dst031
  • Llanes A, Restrepo CM, Del Vecchio G, Anguizola FJ, et al. The genome of Leishmania panamensis: insights into genomics of the L. (Viannia) subgenus. Sci Rep. 2015;5(8550). https://doi.org/10.1038/srep08550
  • Cantacessi C, Dantas-Torres F, Nolan MJ, Otranto D. The past, present, and future of Leishmania genomics and transcriptomics. Trends Parasitol. 2015;31(3):100–8.
  • Kohidai L. Chemotaxis as an expression of communication of Tetrahymena. In: Witzany G, Nowacki M, editors. Biocommunication of ciliates. Dordrecht: Springer; 2016. p. 65–82.
  • Diaz E, Zacarias AK, Pérez S, Vanegas O, et al. Effect of aliphatic, monocarboxylic, dicarboxylic, heterocyclic and sulphur-containing amino acids on Leishmania spp. chemotaxis. Parasitology. 2015;142(13):1621–30.
  • Bray RS. Leishmania: chemotaxic responses of promastigotes and macrophages in vitro. J Protozool. 1983;30:322–9.
  • Leslie G, Barrett M, Burchmore R. Leishmania mexicana: promastigotes migrate through osmotic gradients. Exp Parasitol. 2002;102:117–20.
  • Díaz E, Köhidai L, Ríos A, Vanegas O, et al. Leishmania braziliensis: cytotoxic and chemotactic effects of branched chain polypeptide conjugates with poly [L-Lysine] backbone. Exp Parasitol. 2013;135:134–41.
  • de Menezes JP, Koushik A, Das S, Guven C, et al. Leishmania infection inhibits macrophage motility by altering F-actin dynamics and the expression of adhesion complex proteins. Cell Microbiol. 2017;19(3). https://doi.org/10.1111/cmi.12668
  • Petropolis DB, Rodrigues JC, Viana NB, Pontes B, et al. Leishmania amazonensis promastigotes in 3D Collagen I culture: an in vitro physiological environment for the study of extracellular matrix and host cell interactions. Peer J. 2014;2:e317.
  • Fatoux-Ardore M, Peysselon F, Weiss A, Bastien P, et al. Large scale investigation of Leishmania interaction networks with host extra cellular matrix by surface plasmon resonance imaging. Infect Immun. 2014;(2):594–606.
  • Rochael NC, Lima LG, Oliveira SM, Barcinski MA, et al. Leishmania amazonensis exhibits phosphatidylserine-dependent procoagulant activity, a process that is counteracted by sandfly saliva. Mem Inst Oswaldo Cruz. 2013;108:679–85.
  • Pozzo LY, Fontes A, de Thomaz AA, Santos BS, et al. Studying taxis in real time using optical tweezers: applications for Leishmania amazonensis parasites. Micron. 2009;40(5–6):617–20.
  • Bogdan C, Gessner A, Solbach W, Röllinghoff M. Invasion, control and persistence of Leishmania parasites. Curr Opin Immunol. 1996;8:517–25.
  • Bañuls AL, Hide M, Tibayrenc M. Evolutionary genetics and molecular diagnosis of Leishmania species. Trans R Soc Trop Med Hyg. 2002;96:S9–S13.
  • Smith DF, Peacock CS, Cruz AK. Comparative genomics: from genotype to disease phenotype in the leishmaniases. Int J Parasitol. 2007;37:1173–86.
  • Schönian G, Mauricio I, Gramiccia M, Cañavate C, et al. Leishmaniases in the Mediterranean in the era of molecular epidemiology. Trends Parasitol. 2008;24:135–42.
  • Verma S, Singh R, Sharma V, Bumb RA, et al. Development of a rapid loop-mediated isothermal amplification assay for diagnosis and assessment of cure of Leishmania infection. BMC Infect Dis. 2017;17(1):223.
  • Tavares CA, Fernandes AP, Melo MN. Molecular diagnosis of leishmaniasis. Expert Rev Mol Diagn. 2003;3:657–67.
  • Sundar S, Agrawal S, Pai K, Chance M, et al. Detection of Leishmania antigen in the urine of patients with visceral leishmaniasis by a latex agglutination test. Am J Trop Med Hyg. 2005;73:269–71.
  • Salotra P, Singh R. Challenges in the diagnosis of post kala-azar dermal leishmaniasis. Indian J Med Res. 2006;123:295–310.
  • Kassi M, Kasi PM, Marri SM, Tareen I, et al. Vector control in cutaneous leishmaniasis of the old world: a review of literature. Dermatol Online J. 2008;14:1.
  • Alten B, Caglar SS, Kaynas S, Simsek FM. Evaluation of protective efficacy of K-OTAB impregnated bednets for cutaneous leishmaniasis control in Southeast Anatolia, Turkey. J Vector Ecol. 2003;28:53–64.
  • Quinnell RJ, Courtenay O. Transmission, reservoir hosts and control of zoonotic visceral leishmaniasis. Parasitology. 2009;136:1915–34.
  • Murray H. Clinical and experimental advances in treatment of visceral leishmaniasis. Antimicrob Agents Chemother. 2001;45:2185–97.
  • Melby P. Recent developments in leishmaniasis. Curr Opin Infect Dis. 2002;15:485–90.
  • Palumbo E. Current treatment for cutaneous leishmaniasis: a review. Am J Ther. 2009;16:178–82.
  • Mitropoulos P, Konidas P, Durkin-Konidas M. New world cutaneous leishmaniasis: updated review of current and future diagnosis and treatment. J Am Acad Dermatol. 2010;63(2):309–22.
  • Croft SL, Coombs GH. Leishmaniasis: current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol. 2003;19:502–8.
  • Jhingran A, Chawla B, Saxena S, Barrett MP, et al. Paromomycin: uptake and resistance in Leishmania donovani. Mol Biochem Parasitol. 2009;164(2):111–7.
  • Bhandari V, Sundar S, Dujardin JC, Salotra P. Elucidation of cellular mechanisms involved in experimental paromomycin resistance in Leishmania donovani. Antimicrob Agents Chemother. 2014;58(5):2580–5.
  • Croft SL, Neal RA, Pendergast W, Chan JH. The activity of alkyl phosphorylcholines and related derivatives against Leishmania donovani. Biochem Pharmacol. 1987;36:2633–6.
  • Eibl H, Unger C. Hexadecylphosphocholine: a new and selective antitumor drug. Cancer Treat Rev. 1990;17:233–42.
  • Croft SL. Kinetoplastida: new therapeutic strategies. Parasite. 2008;15:522–7.
  • Soto J, Berman J. Treatment of new world cutaneous leishmaniasis with miltefosine. Trans R Soc Trop Med Hyg. 2006;100:S34–40.
  • Sundar S, Singh A, Rai M, Prajapati VK, et al. Efficacy of miltefosine in the treatment of visceral leishmaniasis in India after a decade of use. Clin Infect Dis. 2012;55(4):543–50.
  • Rijal S, Ostyn B, Uranw S, Rai K, et al. Increasing failure of miltefosine in the treatment of Kala-azar in Nepal and the potential role of parasite drug resistance, reinfection, or noncompliance. Clin Infect Dis. 2013;56(11):1530–8.
  • Mondelaers A, Sanchez-Cañete MP, Hendrickx S, Eberhardt E, et al. Genomic and molecular characterization of miltefosine resistance in Leishmania infantum strains with either natural or acquired resistance through experimental selection of intracellular amastigotes. PLoS One. 2016;11(4):e0154101.
  • Srivastava S, Mishra J, Gupta AK, Singh A, et al. Laboratory confirmed miltefosine resistant cases of visceral leishmaniasis from India. Parasit Vectors. 2017;10(1):49.
  • Berman J. Clinical status of agents being developed for leishmaniasis. Expert Opin Investig Drugs. 2005;14:1337–46.
  • Loiseau PM, Cojean S, Schrével J. Sitamaquine as a putative antileishmanial drug candidate: from the mechanism of action to the risk of drug resistance. Parasite. 2011;18:115–9.
  • Singh N, Kumar M, Singh RK. Leishmaniasis: current status of available drugs and new potential drug targets. Asian Pac J Trop Med. 2012;5(6):485–97.
  • Croft SL, Seifert K, Yardley V. Current scenario of drug development for leishmaniasis. Indian J Med Res. 2006;123(3):399–410.
  • Zerpa O, Ulrich M, Blanco B, Polegre M, et al. Diffuse cutaneous leishmaniasis responds to miltefosine but then relapses. Br J Dermatol. 2007;156:1328–35.
  • Kedzierski L, Sakthianandeswaren A, Curtis JM, Andrews PC, et al. Leishmaniasis: current treatment and prospects for new drugs and vaccines. Curr Med Chem. 2009;16:599–614.
  • Croft SL. PKDL – a drug related phenomenon? Indian J Med Res. 2008;128(1):10–1.
  • Higgins CF. ABC transporters: from microorganisms to man. Annu Rev Cell Biol. 1992;8:67–113.
  • Natera S, Machuca C, Padrón-Nieves M, Romero A, et al. Proficiency of drug-resistant parasites. Int J Antimicrob Agents. 2007;29:637–42.
  • Imamura H, Downing T, Van den Broeck F, Sanders MJ, et al. Evolutionary genomics of epidemic visceral leishmaniasis in the Indian subcontinent. elife. 2016;5. pii: e12613.
  • t’Kindt R, Scheltema RA, Jankevics A, Brunker K, et al. Metabolomics to unveil and understand phenotypic diversity between pathogen populations. PLoS Negl Trop Dis. 2010;4:e904.