Introducción al sistema inmune. Componentes celulares del sistema inmune innato

  1. Monserrat Sanz, J.
  2. Sosa Reina, M.D.
  3. Prieto Martín, A.
Revista:
Medicine: Programa de Formación Médica Continuada Acreditado

ISSN: 0304-5412

Año de publicación: 2017

Serie: 12

Número: 24

Páginas: 1369-1378

Tipo: Artículo

DOI: 10.1016/J.MED.2016.12.006 DIALNET GOOGLE SCHOLAR

Otras publicaciones en: Medicine: Programa de Formación Médica Continuada Acreditado

Resumen

ResumenIntroducción al sistema inmune Nuestro organismo se ve expuesto a microorganismos patogénicos que intentan colonizarnos, causan enfermedades e incluso comprometen nuestra supervivencia. El sistema inmune es la herramienta fisiológica formada por un conjunto de moléculas, células y tejidos que nos defienden de las agresiones causadas por los patógenos o los tumores. En esta actualización se aborda la relevancia del sistema inmune para asegurar nuestra supervivencia. El sistema inmune innato Representa la primera línea de defensa y es el encargado de realizar respuestas rápidas y eficientes frente a los patógenos. Proporciona al sistema adaptativo el tiempo necesario para activarse, expandirse y seleccionar la mejor defensa para terminar con ellos. Componentes celulares del sistema inmune innato Para realizar su función defensiva, el sistema inmune innato se ayuda de un conjunto de células especializadas: los granulocitos, incluyen a los neutrófilos, principales defensores frente a patógenos fagocitables, bacterias y hongos, y a los eosinófilos y basófilos, que nos protegen de parásitos no fagocitables y helmintos. Los monocitos, macrófagos y células dendríticas destruyen microorganismos y los procesan presentándoselos al sistema adaptativo. Las células natural killer son las encargadas de eliminar células infectadas por virus o tumorales.

Referencias bibliográficas

  • Parkin J, Cohen B. An overview of the immune system. Lancet. 2001;357(9270):1777-89.
  • Bonilla FA, Oettgen HC. Adaptive immunity. J Allergy Clin Immunol 2010;125(2)Suppl2:S33-S40.
  • Sanz E, Muñoz A, Monserrat J, Van Den Rym A, Escoll P, Ranz I. Ordering human CD34+CD10-CD19+ pre/pro-B-cell and. Proc Natl Acad Sci U S A 2010;107(13):5925-30.
  • Witko-Sarsat V, Rieu P, Descamps-Latscha B, Lesavre P, Halb-wachs-Mecarelli L. Neutrophils: molecules, functions and patho-physiological aspects. Lab Invest.;80(5):617-53.
  • Von Andrian UH, Mackay CR. T-cell function and migration. Two sides of the same coin. N Engl J Med. 2000;343(14):1020-34.
  • Levay PF, Viljoen M. Lactoferrin: a general review. Haematologica. 1995;80(3):252-67.
  • Abbas AK, Lichtman AH, Pillai S. Cells and tissues of immune system. Cellular and molecular immunology. 8th ed. Philadelphia: Elsevier; 2015. p. 15-37.
  • Male D, Brostoff J, Roth D, Roitt I. Celulas, téjidos y órganos del sistema inmunitario. Inmunología. 8ª ed. Barcelona: Elsevier; 2014. p. 17-51.
  • Stone KD, Prussin C, Metcalfe DD. IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol. 2010;125(2)Suppl2:S73-S80.
  • Paul WE. The immune system. 7ª ed. En: Paul WE, editor. Fundamental immunology. Philadelphia: Lippincott Williams and Wilkins; 2013. p. 1214-60
  • Rottem M, Okada T, Goff JP, Metcalfe DD. Mast cells cultured from the peripheral blood of normal donors and patients with mastocytosis originate from a CD34+/Fc epsilon RI- cell population. Blood. 1994;84(8): 2489-96.
  • Agis H, Willheim M, Sperr WR, Wilfing A, Kromer E, Kabrna E. Monocytes do not make mast cells when cultured in the presence of SCF. Characterization of the circulating mast cell progenitor as a c-kit+, CD34+, Ly-, CD14-, CD17-, colony-forming cell. J Immunol. 1993; 151(8):4221-7.
  • Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol. 2001;2(8):675-80.
  • Castells MC, Klickstein LB, Hassani K, Cumplido JA, Lacouture ME, Austen KF. gp49B1-alpha(v)beta3 interaction inhibits antigen- induced mast cell activation. Nat Immunol. 2001;2(5):436-42.
  • Lauvau G, Loke P, Hohl TM. Monocytemediated defense against bacteria, fungi, and parasites. Semin Immunol. 2015;27(6):397-409.
  • Ginhoux F, Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol. 2014;14(6): 392-404.
  • Auffray C, Sieweke MH, Geissmann F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol. 2009;27:669-92.
  • Hasan D, Chalouhi N, Jabbour P, Hashimoto T. Macrophage imbalance (M1 vs. M2) and upregulation of mast cells in wall of ruptured human cerebral aneurysms: preliminary results. J Neuroinflammation. 2012;9:222.
  • Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity. 2003;19(1):71-82.
  • Hume DA, Summers KM, Rehli M. Transcriptional Regulation and Macrophage Differentiation. Microbiol Spectr. 2016;4(3).
  • Huang Q, Ma Y, Adebayo A, Pope RM. Increased macrophage activation mediated through toll-like receptors in rheumatoid arthritis. Arthritis Rheum. 2007;56(7):2192-201.
  • Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012;122(3):787-95.
  • Mantovani A, Locati M. Tumor associated macrophages as a paradigm of macrophage plasticity, diversity, and polarization: lessons and open questions. Arterioscler Thromb Vasc Biol. 2013;33(7):1478-83.
  • Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011;11(11):723-37.
  • Hespel C, Moser M. Role of inflammatory dendritic cells in innate and adaptive immunity. Eur J Immunol. 2012;42(10):2535-43.
  • Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med. 1973;137(5):1142-62.
  • Zhou T, Chen Y, Hao L, Zhang Y. DC-SIGN and immunoregulation. Cell Mol Immunol. 2006;3(4):279-83.
  • Jaitley S, Saraswathi T. Pathophysiology of Langerhans cells. J Oral Maxillofac Pathol. 2012;16(2):239-44.
  • Van Nierop K, de Groot C. Human follicular dendritic cells: function, origin and development. Semin Immunol. 2002;14(4):251-7.
  • Dzionek A, Fuchs A, Schmidt P, Cremer S, Zysk M, Miltenyi S. BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J Immunol. 2000;165(11):6037-46.
  • Gupta MR, Kolli D, Garofalo RP. Differential response of BDCA-1+ and BDCA-3+ myeloid dendritic cells to respiratory syn-cytial virus infection. Respir Res. 2013;14:71
  • MacDonald KP, Munster DJ, Clark GJ, Dzionek A, Schmitz J, Hart DN. Characterization of human blood dendritic cell subsets. Blood. 2002; 100(13):4512-20.
  • Miles B, Abdel-Ghaffar KA, Gamal AY, Baban B, Cutler CW. Blood dendritic cells: «canary in the coal mine» to predict chronic inflammatory disease? Front Microbiol. 2014;5:6.
  • Moret FM, Hack CE, van der Wurff-Jacobs KM, de JW, Radstake TR, Lafeber FP. Intra-articular CD1c-expressing myeloid dendritic cells from rheumatoid arthritis patients express a unique set of T cell-attract-ing chemokines and spontaneously induce Th1, Th17 and Th2 cell activ-ity. Arthritis Res Ther. 2013;15(5):R155.
  • Piccioli D, Tavarini S, Borgogni E, Steri V, Nuti S, Sammicheli C. Functional specialization of human circulating CD16 and CD1c myeloid dendritic-cell subsets. Blood. 2007;109(12):5371-9.
  • De Landazuri MO, López-Botet M, Timonen T, Ortaldo JR, Herberman RB. Human large granular lymphocytes: spontaneous and interferon-boosted NK activity against adherent and nonadherent tumor cell lines. J Immunol. 1981;127(4):1380-3.
  • Timonen T, Ortaldo JR, Herberman RB. Characteristics of human large granular lymphocytes and relationship to natural killer and K cells. J Exp Med. 1981;153(3):569-82.
  • Moretta L, Bottino C, Pende D, Mingari MC, Biassoni R, Moretta A. Human natural killer cells: their origin, receptors and function. Eur J Immunol. 2002;32(5):1205-11.
  • Sivori S, Falco M, Marcenaro E, Parolini S, Biassoni R, Bottino C. Early expression of triggering receptors and regulatory role of 2B4 in human natural killer cell precursors undergoing in vitro differentiation. Proc Natl Acad Sci U S A. 2002;99(7):4526-31
  • Juelke K, Killig M, Luetke-Eversloh M, Parente E, Gruen J, Morandi B. CD62L expression identifies a unique subset of polyfunctional CD56dim NK cells. Blood. 2010;116(8):1299-307.